Université Joseph Fourier
Master Physique et Ingénieries

Physique Atomique et Moléculaire, Spectroscopie

Jacques DEROUARD, Professeur
Juin 2006
Table des matières

1 Introduction à la Physique Atomique 5
 1.1 Qu’est-ce que la physique atomique? 5
 1.1.1 Physique "de" l’atome 6
 1.1.2 Physique "avec" des atomes 6
 1.1.3 Applications (sciences fondamentales et appliquées) 6
 1.2 Quelques développements récents 13
 1.3 But de ce cours 14
 1.4 Ouvrages généraux suggérés 15

2 Physique des atomes et des molécules: ordres de grandeur 16
 2.1 Structure électronique 16
 2.1.1 Taille des atomes 16
 2.1.2 Niveaux d’énergie électroniques 17
 2.2 Vibration et rotation des molécules 19
 2.2.1 Vibration et liaison chimique 19
 2.2.2 Rotation 22
 2.2.3 Niveaux et Transitions "rovidroniques" 25
 2.3 Interactions magnétiques 26

3 Le photon 28
 3.1 Energie 28
 3.2 Quantité de mouvement 30
 3.2.1 Pression de radiation en électromagnétisme classique 30
 3.2.2 Manifestations physiques et applications 31
 3.2.3 Forces dipolaires et piégeage radiatif 33
 3.3 Moment cinétique 35
 3.3.1 Couple exercé par une onde électromagnétique 35
 3.3.2 Interprétation quantique: spin du photon et états de polarisation de la lumière 37
 3.3.3 Spin du photon, conservation du moment cinétique et règles de sélection lors de transitions radiatives 39
 3.3.4 Moment cinétique orbital de la lumière et transitions multipolaires 40
4 Processus de transitions entre niveaux atomiques et moléculaires

4.1 Principaux schémas d’expériences de spectroscopie 43
4.1.1 Spectroscopie optique .. 43
4.1.2 Spectroscopies non optiques 46
4.2 Cinétique de désexcitation d’un niveau 46
4.2.1 Détermination expérimentale de la durée de vie d’un état excité .. 47
4.2.2 Désexcitation radiative ... 48
4.3 Processus collisionnels ... 48
4.3.1 Désexcitation collisionnelle 48
4.3.2 Transferts collisionnels ... 49
4.4 Notion de section efficace .. 49
4.4.1 Modèle classique .. 49
4.4.2 Définition plus formelle 49
4.4.3 Section efficace et taux de collision 52
4.5 Profils de raie ... 53
4.5.1 Profil "homogène" de Lorentz, largeur "naturelle" 54
4.5.2 Profil "inhomogène". Cas de l’effet Doppler 56
4.6 Processus d’interaction des atomes avec la lumière et cinétique d’évolution ... 58
4.6.1 Absorption ... 58
4.6.2 Emission spontanée ... 61
4.6.3 Emission stimulée ... 62
4.6.4 Effet laser ... 62
4.6.5 Relations entre coefficients d’Einstein 63
4.6.6 Sections efficaces ... 66

5 Atome d’hydrogène et "hydrogénoïdes" 67
5.1 Introduction .. 67
5.2 Rappels de quelques résultats de mécanique classique 68
5.3 Résultats de la mécanique quantique 70
5.3.1 Niveaux d’énergie ... 71
5.3.2 Fonctions d’onde radiales 72
5.3.3 Fonctions d’onde angulaire 76
5.3.4 Orbitales hybrides dirigées 78
5.4 Extension au cas des atomes alcalins et atomes de Rydberg: "concept de défaut quantique" 80

6 Atomes à plusieurs électrons 84
6.1 Hamiltonien d’un atome à p électrons: Approximation des électrons indépendants, potentiel effectif 84
6.2 Structure en couches. Configurations électroniques 87
6.2.1 Configuration fondamentale des atomes 87
7 Structure fine et interactions magnétiques

7.1 Introduction: structure fine des raies spectrales

7.2 Interaction spin-orbite: Atomes à 1 électron actif
 7.2.1 Hamiltonien: cadre électrodynamique
 7.2.2 Ordre de grandeur et lois d'échelle
 7.2.3 Niveaux propres et états propres de l'énergie

7.3 Interaction spin-orbite: Atomes à plusieurs électrons
 7.3.1 Hamiltonien
 7.3.2 Niveaux propres: Approximation du "couplage LS"
 7.3.3 Niveaux et états propres: Approximation du "couplage jj"

7.4 Influence du noyau, structure hyperfine et effets isotopiques
 7.4.1 Effet de masse
 7.4.2 Effet de volume
 7.4.3 Spin et moment magnétique du noyau
 7.4.4 Spin et moment quadrupolaire du noyau

7.5 Interaction avec un champ magnétique externe
 7.5.1 Hamiltonien d'intéraction
 7.5.2 Niveaux et états propres de l'énergie en champ faible:
 effet Zeeman
 7.5.3 Niveaux et états propres de l'énergie en champ fort:
 effet Paschen Back
 7.5.4 Conclusion

8 Transitions radiatives. Intensités et règles de sélection

8.1 Introduction

8.2 Hamiltonien d'interaction champ-atome
 8.2.1 Probabilités de transitions
 8.2.2 Développement multipolaire du Hamiltonien
 8.2.3 Termes dipolaire électrique et dipolaire magnétique:
 ordre de grandeur

8.3 Règles de sélection
 8.3.1 Parité
 8.3.2 Moment cinétique
 8.3.3 Multiplicité et spin électronique
 8.3.4 Moment orbital
 8.3.5 Exemples
 8.3.6 Quelques remarques sur les cas non traités
8.4 Aspects géométriques: polarisation et transitions radiatives, répartition angulaire de l’émission 135
8.4.1 Transitions radiatives par émission spontanée 135
8.4.2 Transitions radiatives par absorption ou émission induite 137
8.4.3 Conclusion ... 139