Cells as liquid motors: Mechanosensitivity emerges from collective dynamics of actomyosin cortex

Jocelyn Étienne1,2, Jonathan Fouchard3, Démosthène Mitrossilis4, Nathalie Bufi5, Pauline Durand-Smet6, and Atef Asnacios2

Edited by Paul A. Janmey, University of Pennsylvania, Philadelphia, PA, and accepted by the Editorial Board January 14, 2015 (received for review September 12, 2014)

Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodeling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerization at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn, regulates the cell length in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. These limiting cases are found to be associated with energy dissipation phenomena, which are of the same nature as those taking place during the contraction of a whole muscle. This similarity explains the fact that single nonmuscle cell and whole-muscle contraction both follow a Hill-like force–velocity relationship.

Significance

Animals have muscles to act on their environment. The molecules endowing them with this faculty are actin and myosin and are also present in nonmuscle cells. Our modelling breaks down the motor-like properties of the actomyosin network in single nonmuscle cells, which show striking similarity to the properties of muscles. In particular, an internal friction sets the maximum speed of contraction of both cells and muscles when myosins do not have time to detach after pulling, just as rowers lifting their oars too slowly after their stroke. The same modelling explains cell-scale mechanosensing: the combination of myosin-driven contraction and actin polymerization-driven protrusivity regulates cell length in a force-dependent manner, making response to rigidity a property of the very material of the cell cortex.

Author contributions: J.É. designed research; J.É., J.F., D.M., N.B., P.D.-S., and A.A. performed research; J.É. contributed new reagents/analytic tools; J.É., J.F., D.M., and A.A. analyzed data; J.É. and A.A. wrote the paper; and J.F., D.M., and A.A. designed the experiments.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. P.A.J. is a guest editor invited by the Editorial Board.

1To whom correspondence should be addressed. Email: jocelyn.etienne@ujf-grenoble.fr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417113112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1417113112

PNAS Early Edition | 1 of 6
rigidity sensing and justifies ad hoc models based on this observation (19).

Results

Intrinsic Sensitivity to Rigidity of Actomyosin. The actin cortex of nonmuscle cells is a disordered network located at the cell periphery. Actin filaments are cross-linked by proteins, such as α-actinin, which experience a rapid turnover (e.g., on the order of 10 s for α-actinin) (27), and actin itself has a scarcely longer turnover time (28). The actin network is, thus, only transiently cross-linked. Following ref. 21, we describe the behavior of such a network by a rubber-like model. Up to the first order, this model leads to a stress–strain relationship of a Maxwell viscoelastic liquid, in which the relaxation time is a characteristic unbinding time \(\tau_c \) (SI Text, S2),

\[
\tau_c \dot{\varepsilon} + \sigma - 2\tau_c E \dot{\varepsilon} = 0, \tag{1}
\]

where \(\dot{\varepsilon} \) is the rate-of-strain tensor, and \(\varepsilon \) is the objective time derivative of the stress tensor \(\sigma \) in the linear setting. \(\sigma = 2E(\dot{\beta} (RR) - I) \), where \(E \) is the elastic modulus of the cross-linked actin network, \(R \) is a basic element of this network (namely the strand vector spanning the distance between any two consecutive actin–actinin bonds) (Fig. L4), and \(1/\beta \) is its reference length when submitted to thermal fluctuations only. As long as these two bonds hold (for times much shorter than \(\tau_c \)), this basic element behaves elastically, and the stress tensor \(\sigma \) grows in proportion with the strain. When a cross-linker unbinds, the filaments can slide relative to one another, and the elastic tension that was maintained by this cross-linker is relaxed: this behavior corresponds to an effective relaxation and happens at a typical rate of \(1/\tau_c \). In sum, the actin network behaves like an elastic solid of modulus \(E \) over a time shorter than \(\tau_c \), because cross-linkers remain in place during such a solicitation, but it has a viscous-like response for longer times with an effective viscosity \(\tau_c E \), because the network yields as cross-linkers unbind.

Such a viscoelastic liquid is unable to resist mechanical stresses (29). However, living cells are able to generate stress themselves (30) thanks to myosin bipolar filaments, which act as actin cross-linkers but are, in addition, able to move along one of the filaments to which they are bound using biochemical energy. Let us call \(\alpha_{myo} \) the fraction of cross-linkers that are myosin filaments and effectuate a power stroke of step length \(t \) at frequency \(1/\tau_{myo} \). The power stroke corresponds to a change of the binding location of the myosin head along the actin filament and thus, affects the length of the neighboring strand \(R \) (Fig. L4). Eq. S4 includes the additional term that describes this myosin-driven evolution of the network configuration. When this equation is integrated to give the local macroscopic stress tensor \(\sigma \), this term results in a contractile stress \(\sigma_{myo} = (\tau_c / \tau_{myo}) E \tau_{myo}(\dot{\beta}^2) \) (SI Text, S2):

\[
\tau_c \dot{\varepsilon} + \sigma - 2\tau_c E \dot{\varepsilon} = \sigma_{myo}, \tag{2}
\]

The three-parameter model obtained (\(\tau_c, E, \) and \(\tau_{myo} \)) is in line with early continuum models (31) and active gel models (32); however, we do not supplement this active stress with an elastic stress unlike in previous models of mechanosensitive active gels (17, 20), where cells are treated as viscoelastic solids (SI Text, S4.2). Consistent with prior computational models (25), this equation shows that the contractile stress \(\sigma \) gives rise to either the buildup of a contractile tension \(\sigma \) (if clamped boundary conditions allow no strain) or a contractile strain rate \(\sigma_{myo} / (2\tau_c E) \) proportional to \(\alpha_{myo} / (\tau_c) \) if free boundary conditions allow strain but not tension buildup (e.g., in the case of superprecipitation in vitro (33)) or a combination of these.

We then asked whether this simple rheological law for the actomyosin cortex could explain the behavior of cells in our microplate experiments (Fig. 1B). Although the microplate setup is less common than flat substrates (11) or imbedding in a gel (5), it has the advantage of offering direct measurements of force and shape evolutions while preserving the well-studied basal and apical structures with lamellae and lamellipodia (34). To do so, we investigated the equilibrium shape and force of a thin shell of actomyosin surrounding a liquid (the cytosol) in the 3D geometry of the experimental setup in Fig. 1C and SI Text, S5. Surprisingly, the response to rigidity of cells is adequately recovered by this simple model of a contractile viscoelastic shell: although a fixed maximum force is predicted above a certain critical stiffness \(k_c = \sigma S/L_0 \) of the microplates, the actomyosin-generated force is proportional to \(k \) when \(k < k_c \) (Fig. 24). Here, \(L_0 \) is the initial plate separation, and \(S \) is the section area of the actin cortex.

Thus, the contractile activity of myosin motors is enough to dow- the viscoelastic liquid-like actin cortex with a spring-like response to the rigidity of its environment (13, 35), a property that was introduced phenomenologically in previous models (19). To get a clear understanding of the mechanism through which this is possible, we simplified the geometry to a 1D problem (Fig. 3B) and found that the spring-like behavior of the contractile fluid was retained (Fig. 3C and SI Text, S3). Indeed, for an environment (external spring) of stiffness \(k \) much beyond the critical value \(k_c \), the contractile fluid is unable to significantly strain the microplates, and equilibrium is reached when it exerts its maximal contractility \(\sigma_c \). In contrast to computational models (25, 26) discussed in SI Text, S4.1, where such a maximum force arises because myosin molecules reach their specific stall force, the maximal contractility \(\sigma_c \) emerges from collective dynamics: we assume a fixed rate of power strokes \(1/t_{myo} \) (SI Text, S3.9 and Fig. S1), and each of them increases the stress in the network of modulus \(E \), but the competing phenomenon of cross-linker detachment at rate \(1/\tau_o \) limits the number of power strokes before the network relaxes. Thus, \(\sigma_c \propto (\tau_o / t_{myo}) E \) is an emergent stalling stress, and the actomyosin cortex contracts and deflects the microplates until this stalling stress is attained.

If, however, \(k \) is much below \(k_c \), deflecting the plates is easier than tensing the actin network. Thus, a maximal strain may be reached before the stalling stress is attained, leading to a plateau stress \(\sigma = \sigma_k (k) \) lower than \(\sigma_c \). The next section discusses how actin polymerization can limit the myosin-powered contraction, thus setting an equilibrium cell length. In any case, this strain has
to be less than 100%, leading to $\sigma_p(k) \leq k \lambda_0$. With a fixed maximal strain, the force finally achieved is proportional to k—just as for a prestretched spring of stiffness k_c (Fig. 3A) or alternatively, just as cells do when exhibiting a mechanosensitive behavior (15, 19) (SI Text, S4.2). This spring-like behavior is supported by our previous report (14) that, when the external spring stiffness is instantaneously changed in experiments, cells adapt their rate of force buildup dF/dt to the new conditions within 0.1 s. This observation was repeated using an AFM-based technique (15). In ref. 16, an overshoot of the rate adaptation, which relaxed to a long-term rate within 10 s, was noted in addition to the initial instantaneous change of slope. Although this instantaneous at the cell scale is not explained by mechanochemical regulation, this behavior is fully accounted for by the mechanical model proposed here (Fig. 2 B and C and SI Text, S3.4). This spring-like behavior is not independent of biochemical regulation of the kinetics of actin and myosin: down-regulation of the myosin contractile activity by blebbistatin results in a reduction of the maximal force that cells can exert (Fig. 2D and SI Text, S3.7), but for a given biochemical set-point, the mechanosensitivity is still present as a function of external stiffness as predicted by the model. Thus, the actomyosin cortex is mechanosensitive by essence: its peculiar active viscoelastic nature, which arises from collective effects, provides a built-in system of adaptation to changes of the mechanical environment.

Force-Dependent Regulation of Cell Length. In microplate experiments, cells are observed to spread laterally simultaneously as they deflect micropetites (Fig. S2). The features of this spreading are similar to those of cells spreading on a single plate both qualitatively and quantitatively (Fig. S3C) (34). Lateral cell spreading and plate deflection both affect the arc distance between the cell adhesions on each plate (Fig. S3 A and B). Cell spreading is known to be mediated by actin treadmilling (36, 37), which controls the extension of the lamellipodium (38). An effect of treadmilling is the net flow of filamentous actin from the lamellipodial region to the proximal part of the actomyosin cytoskeleton between adhesions (37, 39), which persists even if the cell and its adhesions are immobile (18). Thus, the length of the cell is regulated by a combination of the myosin-driven contraction rate $-\varepsilon$ of the cytoskeleton (the retrograde flow described above) and the speed v_1 at which newly polymerized actin is incorporated into the cortex. This feature can be included in the model as a boundary condition, prescribing a difference v_1 between the speed of the cell edge and the one of the actin cortex close to the edge (SI Text, S3.2 and S5). We find that this reduces the maximum tension that the actomyosin network can develop; however, the shape of the dependence vs. the external stiffness k is little altered (Fig. 3C). In particular, the force continues to be linearly dependent on k for low stiffnesses, albeit with a reduced slope, in direct consequence of a mechanical regulation of cell length to a target length L_{e}, which maintains the microplate deflection to $L_{0} - L_{e}$ when k varies; thus, $F = k(L_{0} - L_{e})$ varies linearly with k in this range.

Indeed, the equilibrium length of the cell is attained when there is an exact balance between actin polymerization at the cell edge and the retrograde flow that drives it away (Fig. 3D). However, the interpretation here is not that polymerization generates this flow but rather, that it stems from myosin contraction and that the equilibrium length is reached when the force balance between myosin contraction and external forces acting on the cell is such that retrograde flow exactly balances polymerization speed. In the case when they do not compensate, the cell edge will move at a speed that is the difference between the speed of polymerization and the retrograde flow at the edge until equilibrium is reached. For our setup, it is found that cell length is initially decreasing indicating that retrograde flow is faster than polymerization. Concurrently, because of the resistance of the micropetites to cell contraction, the tension σ increases. In turn, this higher tension reduces the retrograde flow until it is exactly equal and opposite to the polymerization speed. Treadmilling and myosin contraction,
Fig. 3. A 1D simplification of the 3D model preserves the essential mechanisms and results. (A) The spring model with spring stiffness k, and rest length L_0, used elsewhere in the literature with which this model is compared (SI Text, S4.2). (B) Sketch of the 1D model. Actin filaments (green) are bound together by myosin (red) and other cross-linkers (blue), forming a structure of elastic modulus E. Cross-linkers and myosin unbind at a fixed frequency, which is at the origin of the viscoelastic behavior (SI Text, S2), and rebind so that their average number per filament unit length remains constant in time. In addition, myosins perform power strokes at a fixed frequency. The resulting rheology is sketched in Fig. S5. (C) Equilibrium state of models and cells as a function of microplate stiffness k normalized by critical stiffness k_c and maximum force F_{max}, in each case. Blue, experimental results plotted with $k_c = \sigma_m/(L_0 + 4\xi_vv_t) = 41$ nN/µm (no adjustment) (SI Text, S3.6); dashes, tension of the spring model; green, tension calculated in the 1D model for different values of the speed of treadmilling v_t. The stiffness dependence of force in experiments is well-matched by both the spring model and the 1D model. (Inset) Tension calculated in the 1D model for different values of the speed of treadmilling v_t and normalized by F_{max} in the absence of treadmilling $v_t = 0$; treadmilling reduces the force transmitted to the microplates. (D) A dynamic equilibrium is attained when the retrograde flow exactly balances the speed of polymerization at the boundaries (here, sketched in the 1D model geometry).

Fig. 4. Liquid-like motor properties of cells. (A) The rheological model leads to a Hill-type Eq. 3, which matches quantitatively the experimental data both during loading (blue curve at $L_0 - L = 1\mu m$, force velocity in 1D model; boxes, experiments) and at equilibrium (surface intercept with $v = 0$, 1D model; red curve, 3D model; circles, experiments). Dotted lines correspond to the force-distance relationship imposed by a given microplate stiffness k. Same parameters are used as in Fig. 2. (B) Power use in a microplate experiment as a function of the external load F. Only a small part of the load-independent myosin power is being transmitted to the cell environment as mechanical power; the rest is dissipated internally or compensates the antagonistic role of polymerization. Boxes are the experimental results to be compared with the dashed line, which is mechanical power at $L_0 - L = 1\mu m$. Solid lines correspond to $L = L_0$. Same parameters are used as in Fig. 2.

thus, work against one another, which has been noted for a long time (36) and is specifically described by Rossier et al. (18).}

The phenomena regulate cell length. For low external force, myosin-driven retrograde flow is high, because the tension that opposes it is small, and the balance between retrograde flow and polymerization speed is obtained when the cell has significantly reduced its length L_0 (Fig. 2A). This length L_0 is, thus, a tradeoff between the speed v_t at which actin treadmilling produces new cortex (SI Text, S3) and the rate of myosin-generated contractile strain $1/\tau_c = \sigma_m/(2\tau_c E) = \sigma_m(\beta)/2\tau_c (\rho^\mu)^2$, which is itself the result of the frictional resistance of cross-linkers to myosin contraction. Indeed, in the 1D toy problem, the equilibrium length of the system is $2\tau_c v_t$ for $k \ll k_c$, and thus, the force developed by the external spring is $F = k(2\tau_c v_t)$. In the 3D full model of the cell cortex, this equilibrium length is slightly modified as a function of its geometry but still proportional to the product $\tau_c v_t$ (SI Text, S3.3). This equilibrium length is reached when the treadmilling speed balances exactly the speed at which myosin in the bulk contracts the boundaries of the existing cortex through a retrograde flow that involves the whole of the cortex but is maximum in distal regions (Fig. 3D). This type of competition between the protrusive contribution of actin polymerization and the contractile contribution of myosin is, of course, noted in crawling cells (40); it is also observed in immobile cells, where centripetal movement of actin monomers within filaments is noted, even when adhesive structures are limited to a fixed location on a micropattern (18). Thus, the cell-scale model and experiments allow us to determine the speed of treadmilling, which is a molecular-scale quantity. We find $v_t = 6.5 \pm 1.5$ nm/s in the 1D model and 4 nm/s for the 3D model, values that are in agreement with the literature value (18) of 4.3 ± 1.2 nm/s. From the 1D model, we also obtain the relaxation time of the cross-linked actomyosin network, $\tau_r = 1.186 \pm 258$ s, consistent with elastic-like behavior for frequencies higher than 10^{-3} Hz, the contractile characteristic time $\tau_c = 521 \pm 57$ s, consistent with a 24-min completion of actin superprecipitation (33), and $\sigma_m S = (2.0 \pm 0.9) \times 10^{12} \text{nN}$ (SI Text, S3.6). These values fit both the plateau ($v = 0$) force vs. stiffness experimental results (Fig. 2A) and the dynamics of the experiments (Fig. 2B and Fig. S4). Without additional adjustment, they also lead to predictions of the dynamical adaptation of the loading rate of a cell between microplates of variable stiffness (14) (Fig. 2C) and the force–velocity–length phase portrait of the experiments (Fig. 4A).

From an energetic point of view, it also seems very inefficient to use up energy for these two active phenomena that counterbalance one another. However, in a great number of physiological functions, such as cytokinesis and motility, either or both of actin polymerization and myosin contraction are crucial. It is, therefore, highly interesting that, combined together, they provide a spring-like behavior to the cell while preserving its fluid nature, endowing it with the same resilience to sudden mechanical aggression as the passive mechanisms developed by some organisms, such as urinary tract bacteria (41) and insects (42).

Single Cells Have Similar Energetic Expenses to Muscles. These antagonistic behaviors of polymerization and myosin contractility entail energy losses, which define a range of force and velocity over which the actomyosin cytoskeleton is effective. The study of the energetic efficiency of animal muscle contraction was pioneered by Hill (43) (Fig. S5A), who determined a law relating force F and speed of shortening v: $(F + a)(v + b) = c$, where a, b, and c are numerical values that depend on two values specific
a given muscle, namely a maximum force, a maximum speed, and a universal empirical constant. Hill’s law (43) was then explained using a model based on the muscle molecular structure by Huxley (22). Recently, we have shown that a law of the same form describes the shortening and force generation of cells in this setup (13). In particular, the maximum attainable force and velocity are caused by energy losses. The model can shed light on the molecular origin of these losses and leads to the quantitative force–velocity diagrams in Fig. 4A. Indeed, in terms of F and v, Eq. 2 yields (SI Text, S3.5)

$$\frac{F}{S} + E = (v + 2v_t + v_f) = \frac{\sigma_t + E}{v_t} + \frac{LF}{2S}$$

[3]

Here, $v_t = L/(2\tau_v)$ can be understood as an internal creep velocity. The right-hand side corresponds to the source of power (minus the internal elastic energy storage term $LF/2$), and the left-hand side is the power use (up to a constant E added to both sides). The formal similarity of this law with Hill’s law for muscles is not a surprise when one compares this model with Huxley’s model of striated muscle contraction. Indeed, the main components in both models are an elastic structure with transient attachments and a striated muscle contraction. Because the model is based on the collective dynamics of myosin and actin filaments, it yields an understanding of their role in mechanosensitivity: myosin provides a contractile stress σ_t, which will, in turn, generate traction forces at the cell–substrate contact area. In cases where σ_t is in excess to these traction forces (which resist cell contraction), a retrograde flow is generated, and the cell contracts and deforms its environment. This retrograde flow is limited by the time needed by the actin network to fluidize (viscoelastic relaxation time τ_v), and force-dependent. Retrograde flow also works against actin protrusion at the cell edge; we hypothesize that this antagonism regulates cell shape and show in the case of our parallel microplates setup that this regulation of cell length determines the mechanosensitive features of cells. Because cells between microplates present similar features as cells spreading on a flat substrate, we suggest that a competition of retrograde flow and protrusion modulated by the stiffness of the environment could be the means by which cell area is regulated (Fig. S3C). The existence of a deformation set-point had already been speculated on micropillar array experiments (35) and used as a hypothesis in modeling work (19); here, we shed light on its relationship with molecular processes and retrograde flow. Because the deformation set-point is obtained as a balance between protrusion and contraction, it is versatile and can be tuned by the many pathways known to affect either of these. Indeed, biochemical regulation tunes the material properties, thus shifting the mechanosensitive response that we predict (Fig. 2D). Undoubtedly, cells lose energy in such an antagonistic mechanism, which we quantify in Fig. 4B. However, the total power of myosin action that we calculate for a single cell is of the order of 10 fW, which is three orders of magnitude less than the total power involved in cell metabolism (SI Text, S3.8). It is, nonetheless, an impressive expense that is not compensated for in muscle cells, because the evolutionary pressure on this cost can be deemed very low, whereas the same structure confers to the cell its mechanical versatility and reactivity to abrupt mechanical challenges. Thus, the cell may be likened to a wrestler ready to face a sudden struggle and a commuter ready for a sudden jerk: they will maintain a higher muscle tone than necessary for standing, having their own muscles work against one another. Maintaining this muscular tone is an expense of energy, but the benefit of resisting assaults greatly exceeds this cost.

Materials and Methods

Cell Culture, Fibronectin Coating, and Drugs. The rat embryonic fibroblast-S2 (Ref52 line) with YFP-paxillin, provided by Alexander D. Bershadsky (Weizmann Institute, Rehovot, Israel), and the C2-7 myogenic cell line, a subclone of the C2 line derived from the skeletal muscle of adult CH3 mice provided by Denise Paulin and Zhigang Xue (Université Paris-Diderot, Paris), were both cultured and prepared using the procedure described in ref. 13. Glass microplates and in the case of the experiment shown in Fig. 5B, the glass coverslip at the bottom of the chamber were coated with 5 μg/mL from the Ref52 or C2-7 cells were used in microplate experiments described in ref. 14. For blebbistatin treatment discussed in SI Text, S3.7, cells were illuminated through a high-pass colored glass filter (03FG088; Melles Griot), transmitting only wavelengths higher than 575 nm to avoid phototoxicity and photoinactivation of blebbistatin.

Experimental Procedure. Ref52 or C2-7 cells were used in microplate experiments as described in ref. 14 with the same equipment and reagents. Cells were then suspended in a temperature-controlled manipulation chamber filled with culture medium, and fibronectin-coated microplates were brought in contact with a single cell as described in ref. 13. After a few seconds, the two microplates were simultaneously and smoothly lifted to 60 μm from the chamber’s bottom to get the desired configuration of one cell adherent between two parallel plates. One of the plates was rigid, and the other could be used as a nanonewton force sensor (44). By using flexible microplates of different stiffness values, we were able to characterize the effect of rigidity on force generation up to a stiffness of about 200 nN/μm. To measure forces at an

Etienne et al.
even higher stiffness, we used a flexible microplate of stiffness $\approx 10 \text{ nN/\mu m}$ but controlled the plate-to-plate distance using a feedback loop, maintaining its constant rigidity of 0.1 nN/\mu m force and plate deflection (14, 44). Concurrently, we visualized cell spreading under bright-light illumination at an angle perpendicular to the plane defined by the main axis of the two microplates and analyzed the dynamics. For conditions referred to as low stiffness, such experiments with $n=5$ Ref52 cells and $n=4$ C2-7 cells were analyzed. For conditions referred to as infinite stiffness, again, $n=5$ Ref52 cells and $n=4$ C2-7 cells were analyzed. In both cases, the distribution of values obtained for the different cell types was not significantly different (Fig. 57). Additionally, experimental data in Figs. 2A and B, 3C, and 4A are replotted from ref. 13.

Additionally, $n=4$ Ref52 cells were used in experiments using another experimental procedure, allowing us to image the adhesion complexes at one of the plates as in ref. 34. Briefly, total internal reflection fluorescence (TIRF) microscopy is performed through the rigid glass plate at the bottom of the chamber. A fibronectin heavy flexible plates is put in contact with the cell after sedimentation, and its deflection is imaged on a photosensitive detector. A feedback procedure is applied as in ref. 13 to mimic an infinite stiffness of the flexible microplate.

Image Analysis and Geometric Reconstruction. Images were treated with ImageJ software (National Institutes of Health). For side-view experiments, six geometrical points were identified at each time point corresponding to the four contact points of the cell surface with the microplates and the two extremities of the cell equator (i.e., the midpoints where cell surface is perpendicular to microplates). Assuming a symmetry of revolution, these points define uniquely the cell equatorial radius R_e, the average radius at the plates R_p, the cell length L, and the average curvature of the cell surface κ (average of the inverse of the radii of the circles shown in Fig. S3A). For bottom-view experiments, only the radius R_p at the bottom plate can be acquired dynamically. The initial diameter of cells when still spherical was measured using transmission image microscopy; it was used as the value L_0 and found to be consistent with side-view measurements of L_0. In the case of infinite stiffness, we assumed that the curvature of fully spread cells viewed from the bottom behaved as the curvature of side-viewed cells: $\kappa_0 = 1.8 \pm 0.06$ (n = 9). This assumption allowed us to estimate the fully spread radius at the equator, R_e, and use n = 13 experiments for identifying data in the fully spread configuration for infinite stiffness.

ACKNOWLEDGMENTS. J.-É. thanks John Hinch, Claude Verdier, Martial Ballard, Karin John, Philippe Marmottant, Cyril Picard, and Sigolène Lecuyer for discussions. J.-É. and A.A. are members of Groupements de Recherche GDR3070 CellTiss and GDR3570 Biomeca granted by CNRS. J.-É. acknowledges funding granted by Région Rhône-Alpes (Complex Systems Institute IXXI and Cible), Agence Nationale de la Recherche (ANR-12-BS09-0020-01 “Transmig”) and Laboratoire d’Excellence The Engineering of Complexity “Tec21” (ANR-11-LABX-0030). The experimental work was supported, in part, by Agence Nationale de la Recherche (ANR-12-BSV5-0007-01 “ImmmunoMeca”).
Supporting Information

Étienne et al. 10.1073/pnas.1417113112

SI Text

S1. Role of Microtubules. It has been reported that, in addition to the substrate, part (of the order of 13%) of the cortical tension could be balanced by the resistance to compression of microtubules (1). We have, thus, controlled the influence of microtubules in our setup, in particular for low external stiffness, which corresponds to lower length of cells and thus, is geometrically more likely to involve microtubule compression. The results, shown in Fig. S6, indicate that there is no such influence within experimental error. Thus, we neglect the role of microtubules compared with actomyosin tension and microplate resistance to bending in the modeling that follows.

S2. Model Derivation. As stated in the text, we are looking for the simplest model consistent with a dominant loss modulus at low frequencies in cell-scale rheological probing (2) and in vitro studies (3) and with the fact that cross-linkers in vivo are transient with a short residence time (4). Basic models of transiently cross-linked networks based on rubber-like models were first explored by Green and Tobolsky (5) and Yamamoto (6), and their nonlinear properties are still being investigated (7). Their response, up to the first order, turns out to be the same as the one of polymer solutions (that is, their stress–strain relationship is governed by Maxwell constitutive equation 1),

\[\tau_c \frac{\sigma}{\beta} + \sigma - 2 \tau_c E \varepsilon = 0, \]

with \(\sigma = 2E(\beta^2(\mathbf{R} \mathbf{R}) - I) \) (ref. 8, p. 116). The parameter \(1/\beta \) corresponds to the reference length of the strand \(\mathbf{R} \) in a state free of network stress. This reference length is set by thermal fluctuations, because networks of semiflexible actin filament were shown to exhibit entropic elasticity (9). Here, the upper convected Maxwell tensor derivative \(\dot{\mathbf{\sigma}} = \dot{\sigma} - \mathbf{v} \mathbf{\nabla} \sigma - \mathbf{\sigma} \mathbf{v} \mathbf{\nabla} \) takes into account the affine stretching of the strand vectors \(\mathbf{R} \), the basic units of the network, by the velocity gradient \(\mathbf{v} \). The difference is that, for polymer solutions, the time \(\tau_c \) is the ratio of solvent viscosity to polymer elasticity, because this time is the characteristic time at which the polymers can deform relative to an affine global deformation of their surroundings (the solvent) (ref. 8, p. 116), whereas in the case of transiently cross-linked networks, \(\tau_c \) is the characteristic unbinding time of the cross-links. Thus, the product \(\tau_c E \), which has the dimension of a viscosity, is only some apparent viscosity at the macroscopic scale and corresponds, in fact, to an elastic energy dissipation at rate \(1/\tau_c \). If there is a large number of cross-linkers present along a single filament, there will not be a single relaxation time \(\tau_c \) but several (10). In this work, we choose to investigate the properties of the single relaxation time model above, which allows us to calculate analytically the model solution while retaining the essence of a long-time viscous-like and short-time elastic-like material.

A fraction \(\sigma_{\text{myo}} \) of the cross-linkers considered is myosin bipolar filaments. In addition to their cross-linking role, they may effectuate a power stroke at a frequency \(1/\tau_{\text{myo}} \), which results in sliding the corresponding cross-linker by the myosin step length \(e \). If \(\psi(\rho) \) is the orientational distribution function (8), power strokes appear as additional sink and source terms on the right-hand side of the probability balance equation,

\[\frac{\partial \psi}{\partial t} + \mathbf{\nabla}_\rho \cdot (\mathbf{R} \psi) = \frac{\sigma_{\text{myo}}}{\tau_{\text{myo}}} \left(- \psi(\rho) + \frac{1}{2} \mathbf{\nabla}_\rho \psi(\rho - \rho / |\rho|) + \frac{1}{2} \mathbf{\nabla}_\rho \psi(\rho + \rho / |\rho|) \right), \]

which multiplied by \(\rho \rho \) and integrated over all configurations, yields an additional term of contractility:

\[\tau_c \frac{\sigma}{\beta} + \sigma - 2 \tau_c E \varepsilon = \sigma_a = \sigma_{\text{myo}} A. \]

where \(\sigma_a = E \tau_{\text{myo}} \sigma_{\text{myo}}(\ell e)^2 \) is proportional to the myosin concentration and power stroke frequency. The tensor \(A \) is the local orientation tensor of the actin fibers:

\[A = \int_\rho \frac{\rho \rho}{|\rho|^2} \psi \, d\rho. \]

The ratio of the apparent viscosity \(\tau_c E \) and contractile stress \(\sigma_a \) provides us with another characteristic time, \(\tau_e = 2 \tau_c E / \sigma_a = 2 \tau_{\text{myo}} \sigma_{\text{myo}}(\ell e)^2 \), which characterizes the dynamics of shrinking of an actomyosin network in the absence of cross-linkers, which is the case in experiments in vitro (3).

Note that both characteristic times of cross-linker unbinding \(\tau_c \) and myosin power stroke \(\tau_{\text{myo}} \) have been taken as constants independent of the stress or strain to which they are submitted. It is, of course, well-established that there is a dependence of these parameters on stress and strain (11–13), which introduces nonlinearities in the model. An important unsolved question is to determine whether these dependences are or are not major players in the cell-scale mechanical behavior of actomyosin (e.g., through a stress-driven ripping of cross-links). Because their effect is a nonlinear variation of the above model, we study the linear response first (with constant characteristics times) before considering the full nonlinear model in SI Text, S3.9. It is found that the linear model is sufficient to reproduce the experimental data (that is, for our experiments, collective effects explain the observed behavior by themselves). Note that collective effects are also sufficient in Huxley’s (14) model of muscle contraction, where Huxley (14) observes (ref. 14, p. 290) that assuming specific force-dependent binding kinetics only tunes the system’s efficiency, not affecting its ability to fit Hill’s force–velocity experimental observations.

Étienne et al. www.pnas.org/cgi/content/short/1417113112
The model obtained is the one of a viscoelastic liquid, in line with the seminal model by He and Dembo (15), who modeled the cytoskeleton as a viscous fluid and used it in numerical simulations of the cytokinesis. This modeling approach is also similar to the actin dynamics part of the model used by ref. 16 to simulate keratocyte migration. We provide above a microstructure-based derivation of this class of models, which allows us to interpret the dissipation in terms of molecular behaviors (discussion on Hill’s law in SI Text, S3.5). This type of model, to the best of our knowledge, was never used to study mechanosensing behaviors of single cells. In the sequel (SI Text, S4.2), we compare it to models that have been used to analyze cell-scale mechanosensing but will first investigate its basic predictions.

S3. 1D Problem.

S3.1. In the absence of treadmilling. In this section, we investigate the behavior of a material modeled by the constitutive law (Eq. 2) in a simplified, 1D geometry described in Fig. 3B. The actomyosin network is assumed to occupy an infinite cuboid between two horizontal plates: one of which is fixed, and the vertical position of the other is governed by a spring of stiffness \(k/S \) (per unit area) and equilibrium distance with the other plate \(L_0 \). If the current distance between the plates is \(L \), the force exerted by the top plate on the material is, thus, \(F/S = k(L_0 - L)/S \) per unit area.

We assume that the bulk forces acting on the actomyosin network (such as the friction with the cytosol) are negligible compared with the force developed by myosin contraction, thus

\[
\nabla \cdot \sigma = 0,
\]

with the boundary condition \(\sigma \mathbf{e}_z = (F/S) \mathbf{e}_z \) at the upper plate, and corresponds to neglecting friction with the cytosolic fluid in the balance between the actomyosin stress and the force at the plates. By symmetry, only the vertical component \(\sigma_z \) of the stress tensor \(\sigma \) in the actomyosin material is nonzero. We denote it \(\zeta \); from the above, we have \(\partial_z \zeta = 0 \), and thus, the boundary condition imposes

\[
\zeta = F/S = k(L_0 - L)/S \text{ at every } z.
\]

The stress is fully transmitted through the material. However, the rate-of-strain tensor \(\dot{\varepsilon} \) is also limited to a vertical component \(\dot{\varepsilon} = L/L \). Using these equalities, the constitutive Eq. 2 describes the complete dynamics of the system.

The mechanical response of this 1D case can be schematized by a spring-and-dashpot system as in Fig. S5C by noticing that we can decompose the strain rate as

\[
\dot{\varepsilon} = \dot{\varepsilon}_1 + \dot{\varepsilon}_2 + \dot{\varepsilon}_3 = -\frac{\sigma_z}{2\tau_a E} + \frac{\zeta}{2\tau_a E} + \frac{\zeta}{E}.
\]

The second and third terms are classical viscous and elastic rates of strain that can be represented as a spring and a dashpot, respectively. The first one is not classical and may be represented as a winding reel of constant rate of strain \(\dot{\varepsilon}_1 = -\sigma_z/2\tau_a E \). Alternatively, we choose to represent it as a generator of constant tension \(2\sigma_z \) in parallel with a dashpot of viscosity \(4\tau_a E \), in order to illustrate better the dissipation that occurs when myosin is working, which will appear below. (When a dashpot of viscosity \(\eta \) is in parallel with a generator of constant tension \(2\sigma_z \), the rate of strain is \(\dot{\varepsilon} = \zeta_{\text{dashpot}}/\eta \), where \(\zeta_{\text{dashpot}} \) is the stress in the dashpot, such that the total stress is \(\zeta = \zeta_{\text{dashpot}} + 2\sigma_z \). Hence, \(\dot{\varepsilon}_1 = (\zeta - 2\sigma_z)/\eta \). For this choice, one obtains that the different elements need to behave as

\[
\begin{align*}
\dot{\varepsilon}_1 &= \frac{\zeta - 2\sigma_z}{4\tau_a E} & \text{Generator of tension in parallel with a dashpot,} \\
\dot{\varepsilon}_2 &= \frac{\zeta}{4\tau_a E} & \text{dashpot,} \\
\dot{\varepsilon}_3 &= \frac{\zeta}{2E} & \text{spring.}
\end{align*}
\]

With this rheology, a permanent regime (\(\dot{\varepsilon} = 0 \) and \(\zeta = 0 \)) is reached for

\[
F_p = \zeta_{\text{p}} S = \frac{\sigma_a S}{2} \left(\frac{k + k_c}{k_c} - \left(\frac{k + k_c}{k_c} \right)^2 - \frac{4k}{k_c} \right)
\]

\[
= \begin{cases}
 kL_0 & \text{if } k < k_c, \\
 \sigma_a S & \text{else}
\end{cases}
\]

with \(k_c = \sigma_a S/L_0 \). The actomyosin model’s response is, thus, very close to the behavior of a spring of stiffness \(k_c \) and free length \(0 \) when put in series with an external spring of stiffness \(k \). Indeed, the asymptotes are the same for \(k \to 0 \) and \(k \to \infty \) (Fig. 3C), which is not obvious, because in the permanent regime, the model only includes viscous dissipation and contractility. We have, thus, shown that a contractile fluid behaves like a spring in these conditions.

Indeed, when the cell is pulling on a spring of stiffness \(k \), the maximum deflection that it can impose to the spring is \(L_0 \) (e.g., the initial cell length and consequently, the maximum length that it can shorten). However, this maximum deflection is achieved only if the maximum force generated by the cell \(\sigma_a S \) is larger than the external spring force at maximum deflection \(kL_0 \); in other words, only if \(k \) is lower than \(k_c = \sigma_a S/L_0 \). In that case, the force reached is \(kL_0 \) and thus, proportional to \(k \). In the other case \((k > k_c) \), the deflection is less than \(L_0 \) and set by having an equal tension \(\sigma_a S \) in both the external equivalent spring \(k \) and the cell.

One can get some mechanistic understanding of why the collective behavior of actomyosin as modeled in Eq. 2 gives this result using the schematic of the equation in Fig. S5C, although it is important to bear in mind that the schematics are not representing the actual mechanical processes at molecular scale but only provide a system that can be modeled with the same equation as Eq. 2.
In the case of infinite external stiffness k, it is impossible to deflect the plates, and thus, $\varepsilon = 0$. After a transient state, a steady state is attained, with F and, thus, $\dot{\varepsilon}$ reaching a plateau value (which we have to determine). Thus, the spring element also reaches a plateau elongation $\dot{\varepsilon}_3 = \dot{\varepsilon}/(2E)$. Hence, because $\dot{\varepsilon}_1 + \dot{\varepsilon}_2 + \dot{\varepsilon}_3 = 0$, we have

$$
\dot{\varepsilon}_2 = -\dot{\varepsilon}_1 = \frac{\zeta}{4\tau_c E} = \frac{2\sigma_a - \zeta}{4\tau_c E}
$$

and from that, $\zeta = \sigma_a$. The two nonzero strains $\dot{\varepsilon}_1 = -\dot{\varepsilon}_2$ compensate internally and dissipate away the energy provided by myosin motors through the term σ_a.

In the other extreme of $k = 0$, the tension ζ is zero in the spring ($\dot{\varepsilon}_3 = 0$) and dashpot ($\dot{\varepsilon}_2 = 0$). Hence, the tension in the other dashpot is $-2\sigma_a$, which as a result, will contract at a rate of $\dot{\varepsilon}_1 = -\sigma_a/(2\tau_c E) = -1/\tau_c$. This contraction illustrates the dissipation of myosin energy internally by a viscous-like effect, causing a sustained deflection of the microplate until some equilibrium length is reached, which is explained in the following section.

S3.2. In the presence of treadmilling

We now introduce the fact that actin filaments in vivo are constantly being polymerized from one end (plus end) and depolymerized, mostly from the other (minus end), which results in the so-called treadmilling phenomenon (17). Assuming that this treadmilling is at steady state in the cell on average at the relevant timescale of our experiment, the effect of treadmilling in the bulk does not affect the modeling assumptions done in SI Text, S2: the elastic modulus E of the cross-linked network at any instant will have a constant average. However, at the boundary, some filaments will have their plus end oriented toward the boundary, and thus, polymerization of these will entail a net extension of the material (before stress equilibration depending on the boundary conditions).

In the framework of our 1D toy problem, this extension introduces a drift between the deformation of the material and the displacement of the boundary, which can be expressed as

$$
\dot{L} = \dot{L}_k + 2\nu_1,
$$

with ν_1 as the treadmilling speed (that is, the speed at which actin protrudes at the edge) (Fig. 3D). The factor 2 is caused by this effect taking place at both ends of our 1D sample.

When injected into the constitutive model, Eq. [S4] modifies the level of force (and length L_p) in the permanent regime:

$$
F_p = \zeta_p S = \frac{\sigma_a S}{2} \left(k + \frac{k_c}{k_c} \right) \left(\frac{k + k_c}{k_c} \right)^2 - \frac{4k}{\sigma_a S} \left(L_0 - L_e \right),
$$

with a modified critical stiffness $k_c = \sigma_a S/(L_0 + L_a)$. Here, $L_a = 4\tau_c \nu_1$ is a characteristic elastic length of newly polymerized material. The critical stiffness k_c is lowered in proportion with the corresponding relative increase of height. We have also introduced another parameter, the length $L_e = 2\tau_0 \nu_1 = 4\tau_{pol} \nu_1/[(\theta)^2 \tau_{pol}]$. This length is discussed in the text; it is a tradeoff between the rate at which actin contracts under the effect of myosin and the speed at which the actin network expands by polymerization at its edges. It defines the shortest length that the cell achieves in the 1D model, when the stiffness of the plates is vanishingly small: in that case, all of the work of myosins is spent in contracting the part of the actin network newly polymerized.

For a low stiffness, this expression has for asymptote $F_p \sim k(L_0 - L_e)$, and for a large stiffness,

$$
F_p \sim \sigma_a S \frac{L_0 - L_e}{L_0 + L_a}.
$$

Treadmilling does not change the qualitative spring-like response of the material, but the equilibrium length of the equivalent spring is not zero anymore but L_e. As the device stiffness goes to zero, the length of the model meshwork will tend to $L_e = 2\tau_0 \nu_1$, which is a dynamic balance between the speed $2\nu_1$ at which new material is added at the two boundaries (modeling polymerization) and the rate $1/\tau_c$ at which the existing material is contracted by the myosin motors. Inside this model material, even after the final length L_e is attained, with the boundaries is immobile, there remains a continuous centripetal flow (Fig. 1C) that is very reminiscent of the retrograde actin flow observed in both crawling (17) and immobile spread cells (18). Exactly as in these cases, retrograde flow is made possible by depolymerization inside the model material. This behavior induced by treadmilling is an additional source of energy dissipation in the steady state, when the cell is apparently at equilibrium with constant length L_e and force F_p.

S3.3. Dynamics

The above constitutive and force balance equations can be written in terms of one equation only with the tension as the unknown:

$$
\frac{d\varepsilon}{dt} = \frac{\varepsilon_a (k(L_0 - L_e) + \varepsilon(S - \zeta)) + \varepsilon(\varepsilon - k(L_0 + L_a))}{\tau_c \varepsilon_a + \tau_a (\varepsilon + kL_0)/S}.
$$

One can analyze the rate of tension increase when the system begins to pull and ε is still much smaller than ε_a for a low stiffness $k \ll ES/L_0$:

$$
\frac{dF}{dt} = \frac{k(L_0 - L_e) - F(t)}{\tau_c} \sim \frac{F_p(k) - F(t)}{\tau_c}.
$$

Also, for high stiffness, $k \gg ES/L_0$:
Experiments for very low values of the microplate stiffness \(k\) allow us to identify the parameters \(\tau_c\) and \(v_t\) of the model. From \(n = 9\) experiments with \(k \leq 1.6\) nN/\(\mu\)m, we find \(2\tau_c, v_t = L_c = 6.6 \pm 1.1\) \(\mu\)m and \(L_0 = 13.2 \pm 0.1\) \(\mu\)m. These values are consistent with the fact that \(\partial F/\partial k\) is \(L_0 - L_c = 6.8 \pm 0.4\) \(\mu\)m in ref. 19. Additionally, the maximum force attained \(F_p\), the current force \(F(t)\), and the rate of growth of this force \(\partial F/\partial t\) allow us to calculate \(\tau_c\) using Eq. S8:

\[
\frac{\partial F}{\partial t} = \sigma_v S (L_0 - L_c) - F(t)(L_0 + L_a) = \left(F_p(k) - F(t) \right)(L_0 + L_a) .
\]

[S9]

We can rewrite Eq. S7 around \(\zeta^* = F^*/S\), and we find

\[
\frac{\partial F}{\partial t} (t^*) = k(t) \frac{L^*(\sigma_v S - F^*) - L_a F^* - L_c \sigma_v S}{\tau_c \sigma_v S + \tau_c (k(t)L^* + 2F^*)}. \tag{S10}
\]

The result is, thus, a step function, with a value for \(t \gtrsim t^*\) that is exactly the rate of growth predicted by the model for a constant stiffness experiment with \(k = k_1\). This model prediction corresponds to the experimental results in both refs. 20 and 21, except for the overshoot found in the latter.

The step change of the rate of loading can, thus, be explained by a purely intrinsic property of the cell’s cytoskeleton as developed in the text.

In ref. 21, a model is proposed that accounts for a step change and relaxation as they are observed experimentally. However, this model has limited validity around \(t^*\) and breaks down at long times,predicting infinite force. Here, our model originally aiming at describing the long-time behavior of the cell depending on stiffness predicts the main feature of the experiments (the step change of the rate of loading) but not the overshoot found in one of the experiments. Our model, however, may produce this type of overshoot if more than a single relaxation time is used. This refinement of the model would correspond to replacing the spring \(k_1\) in the model in ref. 21 by our viscoelastic constitutive equation. We find that such a refinement is not necessary to explain the data studied here.

In Fig. 2C, we give a numerical simulation result that corroborates the step change of \(\partial F/\partial t\) found in Eq. S10 and can be compared with an experimental curve without any parameter adjustment. The time profile of the microplate effective stiffness is imposed to be the same in the numerical simulation as in the experiment. The profile of force increase obtained presents the same instantaneous change of slope as the stiffness is varied, and the overall profiles match quantitatively.

S3.5. Hill’s law. We examine the power dissipation predicted by the 1D model between two boundaries. The boundaries move toward the sample at velocity \(v\) (which is, thus, positive when the sample contracts) and feel a force \(F\) exerted by the sample (positive in the direction of contraction).

Hill’s historical experiment (22) takes place at a constant level of force \(F\). Our experiments (19), however, prescribe a relationship between \(F\) and \(v\) through the microplate stiffness \(\partial F/\partial t = -kv\). Both can scan the \(F-v\) relationship by varying \(F\) for the former or \(k\) for the latter (in the case of ref. 19, we needed to investigate this relationship for a fixed \(L = L_0 - \delta\), where \(\delta\) is small) (Fig. 4A and Fig. S5A). The calculation below does not require us to use either of these experimental ways to scan the \(F-v\) relationship. It relies only on the material properties of the sample.

As above, the mechanical equilibrium of the sample imposes that the vertical component of the stress tensor \(\zeta\) is equal to \(F/S\). Also, treadmilling produces a mismatch between the plate velocity \(v = L\) and the recoil of the existing network at the plate \(-L\dot{\varepsilon}\) expressed by \(v = -L\dot{\varepsilon} + 2v_t\) (Eq. S4). These relations can be injected into the constitutive Eq. 2:

\[
\tau_a (\dot{F} - 2\varepsilon F) + F - 2\tau_a E\dot{\varepsilon} = \sigma_v S .
\]

We recover a virtual work formulation by multiplying this by the velocity \(L/(2\tau_a)\). Adding the constant \(ESL/(2\tau_a)\) to both sides, this work can now be factorized in the manner of Hill’s law:
\[
\left(\frac{F}{S} + E\right)\left(\nu + 2v_1 + \frac{L}{2\tau_a}\right) = (\sigma_a + E)\frac{L}{2\tau_a} - \frac{L}{2S} \dot{F}.
\]

The meaning of some of these terms is explained in the text.

In the case when the velocity \(\nu\) is zero, the force generated is finite as calculated above in Eq. S6, which can also write as

\[
\frac{F}{\sigma_a} = \sigma_a \left(1 - \frac{E}{\sigma_a} \frac{2v_1}{\nu_a + 2v_1}\right).
\]

Even if both \(\nu\) and \(v_1\) are zero, and thus, the actomyosins do not contract macroscopically (\(\dot{e} = 0\)), the force generated remains finite, because it does work at a molecular scale. Actin polymerization, by adding new material at the edges, introduces a boundary creep, which consumes additional work in conditions of fixed length (\(\nu = 0\)).

As stated in the text, apart from the polymerization boundary creep, the dissipative mechanism is the same as in the model of muscle contraction by Huxley (14). In this model, myosin elastic tails are prestretched preferentially in one direction before binding the actin thin filament. When there is no net sliding (\(\nu = 0\)), they eventually unbind without having had the opportunity to provide work (that is, they have conserved this level of stretching). Although this fact is not explicitly written in the 1957 paper by Huxley (14), the prestretch that had been bestowed on the myosin elastic tail is, thus, lost.

The zero force \(F = 0\) condition is a (theoretical) limit corresponding to zero stiffness of the microplate. This limit is not attainable experimentally, because cells do not spread on both plates if their displacement does not generate any external force, which corresponds to the impossibility to apply any normal force to the plates. This effect probably has to do with the mechanism of force reinforcement of adhesions. In the model, however, the limit can be studied and yields a maximum velocity

\[
v_{\text{max}} + 2v_1 = \frac{E}{\tau_c} \frac{L}{\nu_a + 2v_1}.
\]

This velocity corresponds to the power injected by the myosin motors divided by the elastic modulus of the cross-linked network (minus the treadmilling contribution): indeed, in this limit, the myosins work against the elasticity of the actomyosin itself. The maximum velocity is, thus, limited by the rate \(\tau_a\) at which the actin network fluidizes thanks to the detachment of cross-linkers. Compared with the case of muscles, actin treadmilling reduces the maximum speed of shortening by \(2v_1\), because the receding speed of the edge of the actin network must compensate for this speed of protrusion. Quantitatively, using the values obtained in SI Text, S3.3, we predict \(v_{\text{max}} \approx 12.3\) nm/s, which is very close to \(v_{\text{max}} = 13\) nm/s published in ref. 19.

Again, the dissipation here is of the same nature as for muscles in the model by Huxley (14): in his case, the only cross-linkers between thin and thick filaments are myosin heads, and zero force is obtained at the finite velocity at which the work rate performed by pulling myosin heads is exactly balanced by the work rate needed to deform myosin heads that have not yet detached from the actin filament. They will eventually detach, thus dissipating at a fixed rate the elastic energy that has been transferred to them.

When neither \(F\) nor \(\nu\) is zero, there is nonzero productive work performed on the plates. Because of the existence of maximum force and velocity, it is necessarily written

\[
\frac{Fv}{F_{\text{max}}v_{\text{max}}} = r\left(1 - \frac{F}{F_{\text{max}}} - \frac{v}{v_{\text{max}}}\right).
\]

In both the experiments by Hill (22) and our experiments (19), \(r\) is found to be mostly independent of \(F\) and \(\nu\), and \(r \approx 0.25\). In Huxley’s model of muscles, \(r\) is a signature of the preferential prestretch of myosins that models the power stroke normalized by the detachment rate (14, 23). In our model of cells, \(r \approx 2r_1/\tau_a\) is the ratio of the characteristic times of contraction and stress relaxation through cross-linker unbinding. This observation does not explain the coincidence of finding the same value of \(r\) in both cells and muscles; however, we note that this parameter has a similar significance in both models.

Specifically,

\[
r = \frac{\sigma_a}{\sigma_a \left(1 - \frac{E}{\sigma_a} \frac{2v_1}{\nu_a + 2v_1}\right)}.
\]

Thus, in our case, Hill’s parameter \(r\) is such that

\[
\frac{E}{\sigma_a} = \frac{\tau_c}{2\tau_a} \leq r \leq \frac{\tau_c}{2\tau_a} + \left(\frac{\tau_c}{2\tau_a}\right)^2.
\]

depending on \(v_1\).

Note that these equations can be applied to the actomyosin pushing against an obstacle, with \(0 \leq -F \leq ES\) and \(0 \leq -\nu \leq v_1\).

S3.6. Quantitative analysis. Because \(r \approx 0.25\) in experiments (19), \(r_1/\tau_a\) has to be in the range 0.4–0.5; thus, because \(\tau_c = 521 \pm 57\) s, we have \(\tau_a = 1,186 \pm 258\) s. In turn, using also \(v_1 = 6.5\) nm/s (SI Text, S3.3), we find \(\sigma_a S = F_{\text{max}}(L_0 + L_a)/(L_0 - L_c) = (2.0 \pm 0.9) \cdot 10^3\) nN (\(n = 13\)). Thus, the four parameters of the 1D model, namely \(\tau_a\), \(\tau_c\), \(v_1\), and \(\sigma_a S\), are identified using only the average maximum force (equilibrium of infinite stiffness experiments), maximum velocity (dynamics of experiments with very low stiffness), and shortest length at equilibrium (experiments with very low stiffness) plus the shape of the Hill-type law (parameter \(r\)).
The other experimental data (stiffness dependence of the force [Fig. 3C], dynamics as the microplate stiffness is modified [Fig. 2C], and values of \(F(t) \) at \(L_0 - L = 1 \mu m \) [Fig. 4A]) are matched by the model without any adjustable parameter [e.g., the values found yield a critical stiffness \(k_c = \sigma s \sqrt{L_0 / (L_0 + 4 r_0 \sigma L \mu)} = 41 \text{nN}/\mu m \), which is consistent with the experimental results] (Fig. 3C).

Moreover, the values for \(r_\alpha \) and \(\sigma \), and especially, \(\nu_L \) are independently measurable and consistent with the literature (in the text).

S3.7. Blebbistatin experiments. We check that the model predicts correctly the decrease of the plateau force that is recorded in experiments with infinite microplate stiffness when an increasing dose of blebbistatin is used to prevent myosin activity (19). We expect that the fraction \(\alpha_{\text{myo}} \) will decrease according to the inhibition of myosin-II ATPase activity:

\[
\alpha_{\text{myo}}^{(\text{Blebb})} = \alpha_{\text{myo}} \frac{K_i}{K_i + \text{[Blebb]}}
\]

where \(K_i \) is the inhibitory constant. Because \(\sigma_s \) is proportional to \(\alpha_{\text{myo}}^{(\text{Blebb})} \) and following Eq. S5, the predicted plateau force will decrease with \(\alpha_{\text{myo}}^{(\text{Blebb})} \). This prediction coincides with what is observed experimentally (19) and reported in Fig. 2D, Inset, where the prediction of the decrease of plateau force is shown to match closely the one observed experimentally. The inhibitory constant \(K_i \) used in Fig. 2D is \(K_i = 2.8 \mu m \), similar to that measured experimentally in mouse cardiac muscles (24).

When running the model with the modified fraction \(\alpha_{\text{myo}} \), we obtain the prediction of a shift in the mechanoresponse of cells: the maximum force exerted by cells is lower, as expected, and this saturating force is reached for a reduced critical stiffness \(k_c^{(\text{Blebb})} = k_c \alpha_{\text{myo}}^{(\text{Blebb})} / \alpha_{\text{myo}} \). Below \(k_c^{(\text{Blebb})} \), the force exerted by cells for a given external stiffness is predicted to tend to the same trend as in control conditions. These model predictions match well with experimental results (Fig. 2D).

S3.8. Mechanical energy budget and metabolism. The experiments give access to the maximal mechanical power that the cell can develop (around 0.5 fW for some optimal load \(F = 120 \mu N \) [Fig. 4B]). As discussed in SI Text, S3.5, this power goes to zero when the load is too high and the cell stalls (\(F = F_{\text{max}} \)) and of course, when the load is zero. The model explains this by describing the dissipative phenomena that are at play at a molecular scale in the cascade of events from myosin power strokes down to the mechanical action on microplates. Because these dissipative terms are expressed in terms of the same quantities as the effective mechanical work of the cell (namely the four parameters \(E, r_\alpha, \sigma_s \), and \(\nu_L \)), we are able to evaluate the dissipated power through each of these mechanisms (Fig. 4B). The total of these dissipative terms and the mechanical power corresponds to the total mechanical power provided by myosin power strokes and is evaluated around 10 fW.

It is instructive to compare these 10 fW spent in mechanics with both what was actually transmitted to the cell’s environment (0.5 fW at best) and the total power that is being injected in all of the cell’s functions (that is, the metabolic rate, which is estimated around 30 pW for a single cell) (25). On the one hand, the mechanical efficiency of our nonmuscle cells seems to be rather low, because only 5% of the power provided by myosins is actually being used to act on the cell’s environment. On the other hand, 10 fW of 30 pW is a very low share in the total energy budget of the cell. In the text, we argue that this relatively low energetic cost is a plausible reason why evolutionary pressure would not have led to an increase of efficiency in nonmuscle cells.

We can verify that this value of 10 fW is plausible with respect to what is known on the expenditure of metabolic energy in single cells: ATPase receives some 60% of the metabolic power (26) (thus, around 20 pW), 90% of which goes to protein synthesis, RNA/DNA synthesis, and calcium and sodium cycling. The remaining power, of the order of 10 fW, must be distributed between all mechanisms based on ATP-consuming molecular motors and also, actin turnover. Our estimate of 10 fW for the share of this going to myosin could, thus, plausibly be one order of magnitude too low. Because this figure is being obtained only from the modeling of the dynamics of contraction of cells in the microplate setup, it is an acceptable level of error.

S3.9. Nonlinear extensions of the model. The binding kinetics of actin cross-linkers have been shown to be dependent on the mechanical stress that is felt locally [e.g., \(\alpha \)-actinin-4 is a catch bond with binding affinity that is higher when under load (12), a property characteristic of catch bond-like behavior]. Also, myosin molecules are known to stall when the tension is too high (13). Here, we investigate in what degree these molecular sensitivities to stress affect mechanical behavior that emerges out of their collective dynamics according to the predictions of this model.

Cross-linkers stress-dependent affinity. The first-order correction to the cross-linker bond lifetime \(\tau_\alpha \) is \(\tau_\alpha = \tau_\alpha + \tau_\nu E^L / E \), where \(\tau_\nu \) is the zero stress average lifetime, and \(\tau_\nu^L \) is an additional lag positive for catch bonds and negative for slip bonds. Injected into Eq. 2 and following the same procedure as in SI Text, S3.2, we obtain the equation governing the plateau height \(H_p \) as a function of external stiffness \(k \):

\[
\frac{k}{\tau_\alpha} (H_0 - H_p) (H_p + 4 \tau_\nu E^L (H_0 - H_p) \nu_L) = -2k \left(\tau_\nu^L + E^L \kappa (H_0 - H_p) \right) E \nu_L + \sigma_s \left(1 + \frac{r_\nu^L}{\tau_\nu^L} \kappa (H_0 - H_p) \right) H_p.
\]

Solving for \(H_p \), we obtain the behavior shown in Fig. S1A: in the catch bond case, the maximal force attained against stiff microplates is increased, whereas it is decreased in the slip bond case. For low stiffness, because the model does not build up much in the actomyosin cortex, we have \(\tau_\alpha \approx \tau_\nu \) and an unchanged behavior.

Myosin stalling. If we assume following ref. 27 that the rate at which myosin performs power strokes decreases with stress and take a linear law \(1/\tau_{\text{myo}} = (1 - \lambda_{\text{myo}} \sigma / E) / \alpha_{\text{myo}}^{(\text{Blebb})} \), the equation to be solved is

\[
\frac{k}{\tau_{\text{myo}}} (H_0 - H_p) (H_p + 4 \nu_1 \nu_L) = -2k \nu_1 E \nu_1 + \sigma_s (1 - \lambda_{\text{myo}} \kappa (H_0 - H_p)) H_p.
\]

where \(\nu_1 = \nu/E^{\nu_2} \) at \(\alpha_{\text{myo}}^{(\text{Blebb})}(\nu)^2 \). Results are shown in Fig. S1B. As above, at low external stiffness, the results do not change because stress does not build up much in the cortex. When external stiffness is high, myosin activity is reduced, and thus, the maximum force that can be attained is lower.

Étienne et al. www.pnas.org/cgi/content/short/1417113112 6 of 17
In sum, we obtain a shift of the maximum force exerted by cells against a stiff environment when catch bond cross-linker or stress-sensitive myosin dynamics are considered (Fig. S1). The shift is taking place in the expected direction: catch bonds lead to higher force, whereas slip bonds or stalling myosin lead to lower force. It is interesting to note that the overall profile of stiffness-dependent plateau force is not modified by these nonlinear variants of the rheological model. This robustness of the overall profile means that the collective effect that we describe using the linear model is rather robust with respect to the specific kinetics of the molecules. Another consequence is that, in the absence of direct measurement of these kinetics at the molecular scale during our cell-scale experiments, we cannot hope to determine from cell-scale behavior the modulation of the measured maximum force that is caused by these nonlinear effects.

S4. Comparison with Other Models of Rigidity-Dependent Response.

S4.1. Computational bottom-up models of actomyosin networks. Molecular dynamics of individual actin filaments and actin-binding proteins can be simulated numerically in a simple geometry (box) with boundary conditions that correspond to different stiffness of the surrounding. These simulations are an alternative to the analytical route chosen in SI Text, S3.2 to test whether some rules of molecular interaction lead to rheologies that exhibit a differential response to external stiffness, although these computational approaches do not provide a rheological law such as Eq. 2.

In ref. 28, Borau et al. consider molecular dynamics, including models of actin (no treadmilling), cross-linkers with affinity with actin that follow Bell’s equation, and motors that have a Bell’s affinity and stall against a predetermined force. They obtain a stiffness-dependent plateau stress, which has the same profile as in Fig. 3C, with \(F_p \propto k \) against low stiffness and a constant \(F_p \) against high stiffness, but for reasons that are different: the maximum stress is set by the stall force of individual molecules (whereas it emerges from collective effects in our model).

When the external stiffness is low, the network contracts until a maximal strain is reached; this maximal strain corresponds to a jamming of motors along filaments (whereas the maximal strain in our model corresponds to a dynamic balance between myosin-driven contraction and polymerization-driven protrusion). These effects are also found by ref. 27, where the motors jam at the barbed end of filaments. In this case again, this network-scale stalling is caused by jamming of individual motor molecules in the models of refs. 27 and 28, whereas it emerges from the competition between network myosin-driven contraction and polymerization-driven growth in the case of our model (which is in agreement with the observations of actin retrograde flow in spreading cells).

These models, thus, offer alternative mechanisms by which stress and strain are limited during actomyosin contraction. These alternative mechanisms may combine with the collective effects that we describe, which are shown in SI Text, S3.9. Note that these alternative mechanisms do not predict a retrograde flow of actin after a plateau stress and strain are reached, whereas such a flow is observed in plated cells (18). It is likely that during cell contraction, these mechanisms and the collective effects that we describe appear combined to yield cell behavior. As noted in SI Text, S3.9, molecular-scale microscopy observing the dynamics of motors and cross-linkers during cell contraction would be necessary to determine the contribution of these nonlinear terms.

S4.2. Cell-scale phenomenological models. In refs. 29 and 30, the cell is modeled as a linear elastic body having an intrinsic equilibrium shape that is prestretched to some maximum strain. In our notation, their constitutive equation is

\[
\sigma = 2E(e - e_0),
\]

with \(e_0 \) as an equilibrium shape that the cell would take in the absence of external stresses. This model is supplemented with a phenomenological feedback on the elastic modulus on the timescale of hours or days, which corresponds to the phenomenon of stress-fiber polarization (31). This long-term effect is out of the scope of our model and experiments; thus, our model compares with their model before this feedback comes into play. In a 1D setting, their model, thus, corresponds to the prestretched spring in Fig. 3C, which yields a stiffness dependence closely mimicking experimental data and our model predictions (Fig. 3C). Our model, in addition, provides a microstructural basis for this qualitative behavior and a quantitative reading of experiments; particularly, the equilibrium shape \(e_0 \) and cell stiffness \(k_e \) in ref. 29 are explicated as proportional to the product of a characteristic contraction time and the treadmilling speed, \(\tau_{v_1} \), and as the ratio of the myosin contractile stress and a length, \(k_e = \frac{\sigma_0}{L_c + 4\tau v_1} \), respectively.

In ref. 32, a model is introduced also in the framework of active gel theory. However, it resorts to the stress–strain relationship in ref. 29 so as to avoid calculating the orientation tensor \(Q_{ij} \) of the cytoskeleton and uses a 1D linear elastic stress–strain relationship; equation S7 in ref. 32 in our notation is \(\sigma = 2E(L - L_c) \).

In ref. 33, a 1D viscoelastic solid model is presented; combining equations 2 and 5 in ref. 33 is our notation

\[
\sigma = 2E(L - L_c) + 2\eta\dot{L},
\]

with \(L_c = P_0 - F_s/k_e \) in their notation. Different from the previous models, the viscous term added in this model allows for the study of the dynamics of the cell shortening. However, the equilibrium shape in all three models is a static elastic balance between the environment resistance to deformation and a phenomenological internal elasticity, which corresponds to the spring model described in Fig. 3C.

S5. 3D Problem. In this section, we present a full 3D model of the cell mechanics as a contractile viscoelastic thin shell, obeying the rheological Eq. 2 and enclosing an incompressible cytosol. Forces are transmitted to the microplates at the contact line between the cell boundaries and the microplates.

S5.1. Geometry. It is seen from experimental observations that the cell boundaries connecting the plates are, in most cases, very well approximated by an arc of a circle (Fig. 1C). This shape had already been observed in the case of cells spread on a microneedle array having reached a stationary shape (34); in this setup, we find that it is also true while the cell is spreading (Fig. S3A).

When observing cells from the side, we assume that the cell shape is cylindrical. This assumption is supported by other experiments, where cells are observed from the bottom in TIRF (Fig. S3B). Thus, along the z-axis orthogonal to the microplates which have a location that is parameterized as \(z = \pm l \), where \(l \) is the half-length of the cell, we can fit experimental results using the law.
where R_e is the radius at the cell equator ($z=0$), and k is the signed curvature in the vertical plane in the longitudinal (e_l in Fig. 1C) and orthoradial ($e_\perp = e_l \times e_t$) directions. The reason for these different tensions and details of this Laplace law are given in the next section. We cannot fit the cell shape with an analytical function matching this law, because first, functions solving the corresponding differential equation have never been investigated and do not have the same properties as the hyperbolic cosine and second, the tensions σ and σ_\perp actually vary in some measure along the vertical direction.

From this fitting, we can calculate the volume of the cell through time. Here again, the physicist is surprised to find that the volume defined by Eq. S14 and the plate positions $z = z'$ are not a constant (Fig. S2). However, this volume is not the volume of the cell itself but the volume enclosed by the lateral cell boundaries: indeed, it is observed in side views of cells presenting such a large enclosed volume increase that the cell detaches from the microplates in the central region of the contact area (Fig. S2), forming a pocket between the cell membrane and the microplate, which has every reason to be filled by culture medium seeping between the adhesions seen in Fig. S3B. Although it was not possible to track the volume of these pockets through time and compare it with the enclosed volume variations, we can estimate the energetic cost of the corresponding water flow: adhesions are more than 1 µm apart over a 10- to 20-µm length between the periphery and the central region, where medium pocket is being formed. Assuming a low estimate of $N > 30$ passages of height 0.1 µm through which medium can flow from the periphery to the cell interior, we obtain that the pressure needed to drive the flow noted in Fig. S2 is about 10 Pa and that the power needed is of the order of 10⁻¹³ W (that is, two orders of magnitude smaller than the actomyosin power transmitted to the microplate and measured in the experiments). The formation of such pockets is, thus, very plausible and indeed, observed in most experiments when the force is large.

The data that we present do not allow us to check whether the total change of apparent volume is caused by this water seepage. Therefore, there may be also some volume variations because of a regulation of cell volume (35) superimposed to the one caused by the formation of the pocket. Although the accurate measurement of these variations would be important to understand the spreading dynamics of the cells in our setup, the model below does not require us to assume volume conservation to predict the vertical deflection dynamics of the microplates.

5.2. State of stress of the actin cortex in experiments. Experiments of single-cell stretching (19) allow us to track simultaneously the geometry and force generated by cells between two microplates with an arbitrary stiffness (Fig. 1 and Figs. S2 and S3). To check whether the rheological model developed above can explain the observed cell behavior, we need to first calculate the state of stress within the actin cortex from the experimental observables.

Since it was shown in ref. 19 that the force generation in these experiments is caused by actomyosin contraction, we modeled the cells as an actomyosin surface (shell) surrounding an incompressible but passive cell body (cytosol, nucleus, and noncortical cytoskeleton), with mechanical action that is solely represented by a homogeneous internal pressure difference with the medium outside, $P = P_{\text{cell}} - P_{\text{medium}}$. Actomyosin being considered here as a thin structure, we perform the calculations in terms of a surface tension σ, the thickness of the actomyosin cortex; σ is assumed to be a tensor tangential to the cortex and assumed to have no variation across the cell from the experimental observables.

Rheological model developed above can explain the observed cell behavior, we need to first calculate the state of stress within the actin cortex from the experimental observables.

Here, R_p is the radius of the cell at a microplate, and σ is the tension of the actomyosin cortex along the vertical direction. It is dependent on z and corresponds to the component σ_\parallel of the stress tensor σ (Fig. 1C). Because of the symmetry and the assumption of a thin actomyosin cortex, this tensor can only have one other nonzero component along the orthoradial direction, σ_\perp. Using curvilinear coordinates, we can show that the force balance in the e_t and e_\perp directions at any position z writes

$$0 = Pe_t + \nabla \cdot \sigma = \begin{pmatrix} \frac{P - \kappa_0 \sigma_0 - \sin \theta \sigma_\parallel}{r} \sigma_\parallel + \cos \theta \sigma_\perp \end{pmatrix},$$

where the first line is Laplace law written with different tensions in the vertical and orthoradial directions, and the second line describes the equilibrium along direction e_t.

To solve these equations, we need to specify the geometry of the actomyosin walls using Eq. S14. One can then use power series and get $\sigma = \sigma_0^0 + \sigma_0^1 z^2$ and $\sigma_\perp = \sigma_\perp^0 + \sigma_\perp^1 z^2$ in a closed form depending on geometrical parameters (l, R_e, and k) and the pressure difference P:

$$\sigma = \sigma_0^0 + \frac{z^2 \kappa}{2} \left(\sigma_0^0 \left(\frac{1}{R_e} + \kappa \right) - \frac{P}{w} \right)$$

$$\sigma_\perp = R_e \left(\frac{P}{w - \kappa \sigma_0^0} \right) + \frac{z^2 \kappa P}{w} \left(\kappa R_e - \frac{1}{2} \right),$$

with
\[w\sigma^0 = \frac{1}{2} R_c P + \frac{F}{2\pi R_c} \]

The presence of \(P \) in these equations means that we cannot read directly the state of stress of the actin cortex from its geometry and the measurement of \(F \). However, if we have, for example, an indication on the orthoradial stress \(\sigma_\perp \), which is possible when the shape is stationary and thus, no dissipation takes place in the orthoradial direction, then both \(P \) and \(c \) can be determined. Note that, in this section, we have not made use of any assumption on the rheology of actomyosin; in particular, we have not used the constitutive Eq. 2 yet: the experimental observations fitted by a geometry are sufficient to describe the state of stress in the cortex.

55.3. Equilibrium length and force. We apply the rheological model Eq. 2 to predict the rate of strain \(\partial v_i / \partial s \) in the actin cortex along \(e_i \) and obtain its value as a power series in \(z \) and function of \(F_p \), the geometry, and the model parameters \(\tau_c \), \(\alpha_c \), and \(\sigma_a \). Thus, we need to write the tensorial constitutive Eq. 2 in curvilinear coordinates, assuming that \(A = e_i e_i + \lambda \epsilon_{ij} \epsilon_{ij} \) (i.e., that the contractile stress in the orthoradial direction \(e_\phi \) is a fraction \(\lambda \) of the contractile stress orthogonal to the plates):

\[
\tau_c \left(\frac{\partial \sigma}{\partial t} + v_i \frac{\partial \sigma}{\partial s} - 2 \left(\frac{\partial v_i}{\partial s} + \kappa \nu \right) \sigma \right) + \sigma - 2 \tau_c E \left(\frac{\partial \nu}{\partial s} + \kappa \nu \right) = \sigma_a, \tag{S18}
\]

\[
\tau_a \left(\frac{\partial \sigma}{\partial t} - \frac{2}{r} (v_i \cos \theta + v_\perp \sin \theta) \sigma \right) + \sigma_\perp - 2 \tau_a E \left(v_i \cos \theta + v_\perp \sin \theta \right) = \lambda \sigma_a.
\]

Let us consider a cell that has reached an equilibrium shape, such as the cell in Fig. S2, at time \(t = 2,000 \) s. The force plateaus at a value \(F_p \), the curvature \(\kappa \) has reached a stable negative value, and the equator length \(2l_e \) is steady. Thus, \(l = l_0, R_c = 0, v_\perp = 0, \) and the force does not evolve (\(F = 0 \) and hence, \(\sigma_\perp = 0 \)); these constitutive equations simplify to

\[
\tau_c \frac{\partial \sigma}{\partial t} + \left(1 - 2 \tau_a \frac{\partial v_i}{\partial s} \right) \sigma = \tau_c \sigma_a \equiv \sigma_a \]

\[
\sigma_\perp = \lambda \sigma_a.
\]

Using the force balance (Eq. S17), we can calculate \(v_i(z) \) as a function of \(F_p \):

\[
v_i(z) = z \left(-\phi + 1 - \phi \right) \left(1 + \frac{\kappa^2 s^2}{2 \kappa c} \left(\kappa c + \frac{2 \tau_a + \tau_c}{\tau_c} \phi \right) \right), \tag{S19}
\]

where

\[
\phi = \frac{2 - R_c \kappa}{2 - R_c \kappa + 2 \frac{\tau_a}{\tau_c} \frac{\lambda + \frac{F_p}{\pi R_c \sigma_a}}{\sigma_c}} \in (0, 1].
\]

This flow is the balance between a contractile term proportional to \(1/\tau_c \) and an extensional term in \(1/(2\tau_a) \). In practice, it is always negative: it corresponds to a retrograde flow that vanishes at the cell’s equator for obvious symmetry reasons and increases in magnitude with \(z \). It is modulated by geometric factors but it is also modulated by the force \(F_p \). This retrograde flow is present for all values of the external stiffness.

To reach an equilibrium, we need the retrograde flow to compensate exactly the addition of the new cortex through polymerization at \(z = l \), which means that

\[
v_i(l_p) = -v_i. \tag{S20}
\]

Thus, we have a relation for \(l_p \) when the geometry is known in terms of \(R_c \) and \(\kappa \). When the force \(F_p \) is low (in the case of vanishing \(k \)), there is an asymptote value \(l_c \) for \(l_p \) provided that it is much smaller than \(R_c \), which is found to be the case. Experiments provide a redundant reading of \(l_c \), because the force has to be \(2k(l_0 - l_c) \) at low \(k \) values. Thus, we also have,

\[
\lim_{k \to 0} \frac{\partial F_p}{\partial k} = \frac{2}{l_0 - l_c}.
\]

These redundant experimental observations consistently give \(l_p/l_0 = 0.46 \pm 0.06 \). In Eq. S19, \(l_p \) is proportional to \(\tau_c v_i \) as in the 1D model but modulated by both the curvature (which is observed) and the contractility in the orthoradial direction, which cannot be accessed. Using the values \(\tau_c = 521 \pm 57 \) s and \(\tau_a = 1,186 \pm 258 \) s obtained from the dynamics of the 1D model (SI Text, S3.3), it is found that the model can predict the cell behavior only if the orthoradial contractility \(\sigma_\perp \lambda \approx 2 \sigma_a \) is significantly lower than \(\sigma_a \) (\(\lambda \leq 0.5 \)); otherwise, the pressure buildup in the cytosol prevents the cell from contracting. Thus, we take \(\lambda = 0.5 \) and \(v_\perp = 4 \) nm/s, which is close to the value found in 1D (6.5 \pm 1.5 nm/s) and the literature (4.3 \pm 1.2 nm/s) (18).

There remains one last free parameter in the 3D model, the (surfacic) contractility \(w\sigma_a \). Its value can be assessed in the limit of infinite microplate stiffness \(k \); we find \(w\sigma_a = 15 \) nN/\mu m. Using these values, the 3D model yields a plateau force very close to the one of the 1D model (Fig. 2A).

Fig. S1. Nonlinear extensions of the model. (A) Effect of catch bond-type cross-linkers. Taking $\tau_{\alpha} = \tau_0 + \tau_1 \sigma / \varepsilon$ with $\tau_1 = 5\tau_0$ (SI Text, S3.9), a fivefold increase of cross-linker affinity under high external stiffness conditions is obtained, resulting in a 30% increase of the maximum force. (B) Effect of myosin stalling. Taking $\lambda_{\text{myo}} = 3$ (SI Text, S3.9), a 30% decrease of the rate of myosin power strokes under high external stiffness conditions is obtained, resulting in a fivefold reduction of the plateau force. (C) Comparison of the model predictions of stiffness-dependent force in the cases of myosin stalling, catch bonds, and slip bonds. The mechanosensitivity caused by collective effects, with the minimal model that is the linear model, is preserved in the nonlinear cases.
Fig. S2. Time evolution of the force and geometry of a single cell spreading between microplates of intermediate stiffness $k = 176 \text{nN/μm}$. (Top) The force grows until it reaches a maximum value. (Middle) Concurrently with the force increase, the cell spreads on the microplates, and R_p increases. The radius at the equator R_c also increases after a transient decrease. Both stabilize when the force is maximal. As the cell deflects the microplates, its half-length l decreases; however, this decrease does not compensate for the spreading in terms of (apparent) volume, and the volume V enclosed by the lateral cell surfaces increases more than twofold. (Bottom) Transmission images show that this apparent volume increase happens concurrently with the formation of pockets (arrowheads) away from the peripheral cell adhesions (Fig. S3B), where the cell locally detaches from the microplate. Details are in SI Text, S5.1.
Fig. S3. (A) Light transmission image of a cell spreading on microplates with infinite stiffness \(k \) seen from the side. The sequence of shapes assumed by the cell walls in the course of an experiment can be described by arcs of circles. (B) TIRF visualization of fluorescent paxillin in a cell spreading on microplates with infinite stiffness \(k \).
infinite stiffness k seen from the bottom. The spreading is isotropic, which supports the axial symmetry hypothesis. Adhesion zones are clearly apart from one another; along a circular region of interest, we find $N = 40$ adhesion zones separated by paxillin-free passages of average width 1.5 μm (SI Text, S5.1). (C) Comparison of the features of cells spreading on (Left) two plates and (Right) a flat substrate. The spreading structure is preserved, with a lamellipodium structure at the front and more proximally, focal adhesions of increasing maturity as well as the different phases of spreading, rates of spreading, and focal adhesion dynamics (1). In cells spread on a flat substrate, actin polymerization at the edge and its retrograde flow compete to define the cell edge position and hence, the cell size (2). This regulation of cell size through a competition between polymerization and retrograde flow is also predicted by our model in the parallel plates geometry.

Fig. S4. Comparison of the model prediction of dynamics of cell contraction with experimental observations of individual cells. Symbols measured force (blue) and length (red) for three different cells contracting against a fixed external stiffness $k = 7$ nN/μm. These three cells are seen to have a different size (initial length ∼10.5, ∼11.5, and ∼13 μm) and different but comparable dynamics. Solid lines show 1D model predictions (without any fitting) using actomyosin parameters σ_a, E, τ_α, and v_t determined independently of the $k = 7$ nN/μm data and are valid for experiments over the whole range of external stiffness (Fig. 2).
Fig. 55. (A) Sketch of the phase portrait of active contraction against a load or a spring. Muscle contraction experiments performed by Hill (1) correspond to contraction under a fixed load F (open arrowhead). The so-called Hill curve links this imposed force and the initial speed of retraction (solid blue curve). This model predicts a similar curve for cell contraction and the following dynamics, corresponding to decreasing length L until an equilibrium length L_p is reached as the contraction speed v vanishes. This length L_p is force-dependent (red curve). If treadmilling was absent, the limit of this curve would be a force-independent final length for any $F < F_{\text{max}}$ and a length-independent force F_{max} necessary to maintain any positive length. Experiments with cells cannot be performed at constant force as in the case of muscles, because cells need to adhere and spread (2). These experiments are performed here at constant stiffness k; thus, the

Legend continued on following page.
trajectory in the phase portrait is in a plane defined by $F = k(L_0 - L)$ (solid arrowhead). The curve that we report in ref. 2 and compare with Hill’s curve needs, thus, to be acquired for some fixed small deflection $\delta = 1 \mu m$ (dot dash blue line), for which tuning k allows us to obtain any level of force $F = k\delta$. (B) The limiting factors setting a maximum speed and force are of the same nature in both the case of muscle contraction (3) and this model. As illustrated in these cartoons, the maximum speed arises when there is no external force, but the speed is such that some of the rowers generate friction before lifting up their oars and thus, counteract, in part, the pushing of the others (i.e., myosins do not have time to detach). The maximum force, at zero speed, arises from the fact that myosins detach after their stroke (as rowers will lift their oars) and thus, lose the elastic energy that they had achieved in the stroke, bending their oar. (C) A schematic of the rheological model (Eq. 2) of actomyosin. The schematic using a spring of stiffness E, two dashpots of viscosity $2\tau\alpha E$, and a perfect generator of tension σ_a illustrates the function of the rheological model in the cases $k = \infty$ and $k = 0$ but has no molecular-scale relevance. (D) For $k = \infty$, the total deformation ε has to be zero. At steady state, the tension is constant, and thus, $\varepsilon_3 = F/(SE)$ is constant as well; hence, $\varepsilon_2 + \varepsilon_1$ is also constant. The tension $2\sigma_a$, thus, elicits equal and opposite tensions σ_a in both dashpots, contracting one $[\varepsilon_2 = -\sigma_a/(\tau\alpha E)]$ and extending the other $[\varepsilon_3 = \sigma_a/(\tau\alpha E)]$, which illustrates the internal creep. (E) For $k = 0$, the tension in the main branch is zero, and thus, the spring and dashpot ε_2 do not work. Thus, tension $2\sigma_a$ is entirely absorbed by the dashpot ε_3, which contracts in doing so; thus, $\varepsilon = \varepsilon_3 = \sigma_a/(\tau\alpha E)$ until the system reaches an equilibrium length (SI Text, S3.2 shows the additional role of treadmilling in this process, which is not shown here).

Fig. S6. Microtubules have a negligible influence on stiffness-dependent force generation. Blue boxes show plateau forces exerted by cells in microplate experiments in the presence of 1 μM Colchicine. Red crosses show controls. Discussion is in SI Text, S1.
Fig. S7. Plateau force measured for two different cell types: Ref52 fibroblasts and C2-7 myoblasts. (A) Plateau force divided by external stiffness F_p/k micrometers for $k < k_c$. Welch two-sample t test cannot discriminate them (P value $0.083 > 0.05$). (B) Plateau force F_p for $k > k_c$ in nanonewtons. Welch two-sample t test cannot discriminate them (P value $0.17 > 0.05$).