Statistical physics of the melting of inhomogeneous DNA

Sahin Buyukdagli and Marc Joyeux*

Laboratoire de Spectrométrie Physique (CNRS UMR 5588), Université Joseph Fourier-Grenoble 1, BP 87, 38402 St Martin d’Hères, France

(Received 28 September 2007; published 6 March 2008)

We studied how the inhomogeneity of a sequence affects the phase transition that takes place at DNA melting. Unlike previous works, which considered thermodynamic quantities averaged over many different inhomogeneous sequences, we focused on precise sequences and investigated the succession of local openings that lead to their dissociation. For this purpose, we performed transfer-integral-type calculations with two different dynamical models: namely, the heterogeneous Dauxois-Peyrard-Bishop model and the model based on finite stacking enthalpies we recently proposed. It appears that, for both models, the essential effect of heterogeneity is to let different portions of the investigated sequences open at slightly different temperatures. Besides this macroscopic effect, the local aperture of each portion indeed turns out to be very similar to that of a homogeneous sequence with the same length. Rounding of each local opening transition is therefore merely a size effect. For the Dauxois-Peyrard-Bishop model, sequences with a few thousand base pairs are still far from the thermodynamic limit, so that it is inappropriate, for this model, to discuss the order of the transition associated with each local opening. In contrast, sequences with several hundred to a few thousand base pairs are pretty close to the thermodynamic limit for the model we proposed. The temperature interval where a power law holds is consequently broad enough to enable the estimation of critical exponents. On the basis of the few examples we investigated, it seems that, for our model, disorder does not necessarily induce a decrease of the order of the transition.

DOI: 10.1103/PhysRevE.77.031903 PACS number(s): 87.14.G−, 05.70.Jk, 87.15.A−, 64.70.−p

I. INTRODUCTION

This article is the last one of a series of three papers aimed at investigating the statistical physics of DNA denaturation—i.e., the separation of the two strands upon heating [1–6]—on the basis of dynamical models like the Dauxois-Peyrard-Bishop one [6–8] and models we recently proposed to take the finiteness of stacking interactions [9] explicitly into account [10,11]. In the first article of the series [12], we analyzed the denaturation of homogeneous sequences at the thermodynamic limit of infinitely long chains. We calculated the six fundamental exponents which characterize the critical behavior of the specific heat, the order parameter, the correlation length, etc., by using the transfer integral (TI) technique [13,14]. We showed that for the two investigated models the exponent for the specific heat is significantly larger than 1, which indicates that, within the validity of these models, denaturation is a first-order phase transition. We also checked the validity of the four scaling laws which connect the six exponents and observed that Rushbrooke and Widom identities are satisfied, but not Josephson and Fisher ones. While the invalidation of the Fisher identity is without any doubt a consequence of the dimensionality $d=1$ of the investigated models, we argued that the failure of the Josephson identity may well be due to the divergence of the order parameter—i.e., the average separation between paired bases. The purpose of the second article of the series [15] was to describe how the finite length of real sequences affects their critical properties. We characterized in some detail the three effects that are observed when the length of homogeneous sequences is decreased: namely, the decrease of the critical temperature, the decrease of the peak values of all quantities (like the specific heat and the correlation length) that diverge at the thermodynamic limit but remain finite for finite sequences, and the broadening of the temperature range over which the critical point affects the dynamics of the system. We furthermore performed a finite-size scaling analysis of the models and showed that the singular part of the free energy can indeed be expressed in terms of a homogeneous function. We however pointed out that, because of the invalidation of Josephson identity, the derivation of the characteristic exponents which appear in the expression of the specific heat requires some care.

The investigations performed so far [12,15] therefore dealt with homogeneous sequences. The reason is that homogeneous sequences display only one phase transition; that is, the whole sequence opens at a single well-characterized temperature on which theoretical investigations can focus. In contrast, an examination of UV absorption spectra revealed a long time ago that the denaturation of sufficiently long inhomogeneous sequences occurs through a series of local openings when temperature is increased [16], which makes this problem substantially more difficult to analyze. However, since all real DNA molecules display a heterogeneous, almost random-looking, distribution of A, T, G, and C bases, a statistical physics description of the denaturation of such inhomogeneous sequences appears as a necessity.

In the language of statistical physics, a heterogeneous distribution of the individual components constituting a complex system is called disorder. One distinguishes field disorder, where heterogeneity concerns the distribution of the external field coupled to every component of the system, from bond disorder, which accounts for a heterogeneous dis-
tribution of the interactions between the elementary com-
ponents of the system. No external field is considered in the
present paper, which therefore focuses on bond disorder. The
consequences of the introduction of disorder in a homoge-
nous system which displays a second-order phase transition
have been characterized by Harris [17]. According to the
Harris criterion, disorder does not affect the critical behavior
of the homogeneous system if the correlation length critical
exponent ν fulfills the inequality $\nu \geq 2/d$, where d is the
dimensionality of the system, because this implies that the
correlation length is large enough to smear out heterogene-
ities close to the critical point. If the Harris criterion is in-
stead violated, then a new critical point generally sets in. The
exponents of the power laws that are observed in the neigh-
brorhood of this new critical point satisfy the Harris criterion.
Harris’ work was extended a few years later by Imry and
Wortis [18] to systems with a sharp first-order phase transi-
tion at the homogeneous limit. On the basis of a heuristic
argument, Imry and Wortis suggested that all first-order tran-
sitions of homogeneous systems could well be rounded and
transformed to second-order transitions upon the introduc-
tion of disorder, except if the dimensionality of the system is
larger than a certain critical dimensionality d_c and its cor-
relation length sufficiently large. Note, however, that Imry and
Wortis’ argumentation explicitly assumes a finite correlation
length at the critical temperature, while DNA melting corre-
sponds to a somewhat peculiar first-order phase transition
with diverging correlation length. More recently, Hui and
Berker [19,20] and Aizenman and Wehr [21] showed on the
basis of general arguments that if a temperature-driven first-
order phase transition involves a symmetry breaking, then it
converts to a second-order phase transition upon the intro-
duction of disorder. Otherwise—i.e., if the critical point in-
volves no symmetry breaking—it is simply eliminated by
disorder. Since DNA denaturation, as described by the mod-
els we investigate, does not involve symmetry breaking, this
would imply that the denaturation of heterogeneous DNA se-
quences is associated with neither a phase transition nor a
succession thereof.

Besides these general theoretical investigations, the ques-
tion of the introduction of disorder in DNA sequences has
been the subject of recent simulations [22–26], which dealt
with models inspired from the Poland-Scheraga one [27] in
the regime where the pure model displays a first-order transi-
tion—i.e., for a loop exponent $c = 2.15 > 2$. These stud-
ies lead to contradictory interpretations. Garel and Monthus
[22,23] indeed concluded that the transition remains first or-
der in the disordered case, while Coluzzi and Yeramian
[24–26] instead expressed the opinion that the random sys-
tem undergoes a second-order transition. It should be empha-
sized that these studies considered disorder-averaged ther-
odynamic observables and agreed on the point that these
observables are not self-averaging at critical points, essen-
tially because of the distribution of pseudocritical tempera-
tures over the ensemble of samples [22,26]. In the present
work, we will tackle a different question: is it sensible to
describe the succession of local openings, which take place
when the temperature of a precise heterogeneous sequence is
increased, as a series of local phase transitions and, eventu-
ally, to specify the order of the local transitions?

The remainder of this paper is organized as follows. The
dynamical models whose physical statistics we investigate
are briefly described in Sec. II for the sake of completeness.
We next derive in Sec. III the Tl formulas which enable the
calculation of the thermodynamic properties of finite hetero-
geneous sequences. We discuss in Sec. IV the critical behav-
ior of the specific heat per particle, $c_V = C_V / N$, the average
bubble depths $\langle \gamma_n \rangle$, and the correlation length ξ, before con-
cluding in Sec. V.

II. NONLINEAR HAMILTONIAN MODELS FOR
INHOMOGENEOUS DNA SEQUENCES

The Hamiltonians of the two DNA models whose critical
behavior is studied in this paper are of the form

$$H = \sum_{n=1}^{N} \left[\frac{\dot{y}_n^2}{2m} + V_M^{(n)}(y_n) + W^{(n)}(y_n, y_{n-1}) \right],$$

(1)

where y_n is the transverse stretching at the nth pair of bases,
$V_M^{(n)}(y_n)$ describes the energy that binds the two bases of pair
n, and $W^{(n)}(y_n, y_{n-1})$ stands for the stacking interaction
between base pairs $n-1$ and n. The superscripts (n) in these
terms indicate that both the on-site and stacking interactions
may be site dependent for inhomogeneous sequences. The two models agree in representing the interbase bond
$V_M^{(n)}(y_n)$ by Morse potentials, but the expressions for the
stacking interactions are rather different. Moreover, the
heterogeneous Dauxois-Peyraud-Bishop (DPB) model [8,14]
as-
uemes that heterogeneity is essentially carried by different
Morse parameters for AT and GC base pairs, while the mod-
els we proposed [10,11] are based, like thermodynamic ones
[9], on a set of ten different finite stacking enthalpies ΔH_n
corresponding to all possible oriented successions of base
pairs. More precisely, for the heterogeneous DPB model
[8,14],

$$V_M^{(n)}(y_n) = D_a(1 - e^{-\alpha y_n})^2,$$

$$W^{(n)}(y_n, y_{n-1}) = W(y_n, y_{n-1}) = \frac{K}{2}(y_n - y_{n-1})^2 \left[1 + \rho e^{-\alpha(y_n+y_{n-1})} \right],$$

(2)

while for our model [10], hereafter called the Joyeux-
Buyukdagli (JB) model,

$$V_M^{(n)}(y_n) = V_M(y_n) = D(1 - e^{-\alpha y_n})^2,$$

$$W^{(n)}(y_n, y_{n-1}) = \frac{\Delta H_n}{2}(1 - e^{-\beta(y_n-y_{n-1})}) + K_b(y_n - y_{n-1})^2.$$

(3)

The nonlinear stacking interaction in Eqs. (2) has the particu-
larity of having a coupling constant which drops from
$K(1+\rho)$ to K as the paired bases separate. This decreases the
rigidity of DNA sequences close to dissociation and results
in a sharp first-order transition [7]. The first term in the ex-
pression of $W^{(n)}(y_n, y_{n-1})$ in Eq. (3) describes the finite stack-
ing interaction and the second one the stiffness of the phosphate/sugar backbone. The introduction of finite stacking enthalpies ΔH_n in the model is by itself sufficient to ensure a first-order denaturation transition [14].

We used two sets of numerical values for the DBP Hamiltonian. For the calculation of the melting profiles discussed in Sec. III, we used the set of parameters of Zhang et al. [14]: that is, $D_n=0.038$ eV for AT base pairs, $D_n=0.042$ eV for GC base pairs, $a_n=4.2$ Å$^{-1}$ for both AT and GC base pairs, $K=0.042$ eV Å$^{-2}$, $\rho=0.01$, and $\alpha=0.35$ Å$^{-1}$. For the discussion of the specific heat critical exponent in Sec. IV, we instead used values that coincide, except for D_n, with those we used in our work on critical exponents [12]. More explicitly, $D_n=0.027$ eV for AT base pairs, $D_n=0.033$ eV for GC base pairs, $a_n=4.5$ Å$^{-1}$ for both AT and GC base pairs, $K=0.06$ eV Å$^{-2}$, $\rho=1.0$, and $\alpha=0.35$ Å$^{-1}$. The ten values of the stacking enthalpies ΔH_n of the JB model were taken from Table I of Ref. [9] and the other parameters of this model are those of Ref. [14]: that is, $D=0.04$ eV, $a=4.45$ Å$^{-1}$, $K_b=10^{-5}$ eV Å$^{-2}$, and $b=0.10$ Å$^{-2}$. Finally, the reduced mass of each base pair was considered to be $m=300$ amu in the molecular dynamics simulations reported in the next section.

III. TRANSFER INTEGRAL CALCULATIONS FOR INHOMOGENEOUS DNA SEQUENCES

When ignoring the dissociation equilibrium $S_2 \rightarrow 2S$, which properly governs the separation of the two complementary strands (S) when the last base pair of double stranded DNA (S_2) opens [4,5,8,14], and neglecting the trivial term arising from kinetic energy, the partition function for the DNA models of Eq. (1) with open boundary conditions can be expressed as

$$Z = \int dy_1 dy_2 \cdots dy_N \exp \left\{ -\beta \sum_n \left[V_M^{(n)}(y_n) + W^{(n)}(y_{n+1}, y_n) \right] \right\},$$

(4)

where $\beta=(k_BT)^{-1}$ is the inverse temperature. The TI method [13,14] is a technique that allows for the efficient computation of Z. While this method was originally developed to investigate homogeneous sequences at the thermodynamic limit of infinitely long chains [13], Zhang et al. [14] have shown how it can be adapted to finite sequences described by the heterogeneous DBP model. It turns out that, because of the symmetric form of the Hamiltonian for the JB model, TI calculations are quite simplier for this model than for the DBP one. In this section, we first indicate the successive steps for calculating the partition function of the JB model and, consequently, its free energy, entropy, and specific heat. We next derive expressions for two-point correlation functions.

The first step for calculating Z consists in rewriting Eq. (4) in the form

$$Z = \int dy_1 dy_2 \cdots dy_N \exp \left\{ -\beta \sum_n \left[V_M^{(n)}(y_n) + W^{(n)}(y_{n+1}, y_n) \right] \right\},$$

(5)

where the TI kernel $K_n(y,x)$ for base pair n interacting with base pair $n-1$ has the form

$$K_n(y,x) = \exp \left\{ -\beta \left[\frac{1}{2} V_M^{(n)}(y) + \frac{1}{2} V_M^{(n-1)}(x) + W^{(n)}(y,x) \right] \right\}.$$

(6)

For the DBP model, $K_n(y,x)$ is not symmetric $[K_n(y,x) \neq K_n(x,y)]$ when base pairs n and $n-1$ are different. Zhang et al. [14], who used the DBP model, therefore had to develop a symmetrization procedure that makes the entire scheme more complex. In contrast, $K_n(y,x)$ is symmetric $[K_n(y,x)=K_n(x,y)]$ for the JB model, whatever the base pairs at positions n and $n-1$, so that no additional symmetrization procedure is required. For the JB model, the essential difference between the procedures for homogeneous and inhomogeneous sequences consequently arises from the fact that ten different kernels need be considered, one for each possible succession of two base pairs [9]. The trick borrowed from method 2 of Zhang et al. [14] then consists in developing each kernel in a different orthonormal basis

$$K_n(y,x) = \sum_{i} \lambda_i^{(n)} \Phi_i^{(n)}(y) \Phi_i^{(n)}(x),$$

(7)

where the $\{\Phi_i^{(n)}\}$ and $\{\lambda_i^{(n)}\}$ are the eigenvalues and eigenvectors of the TI operator and satisfy the equation

$$\int dx K_n(x,y) \Phi_i^{(n)}(x) = \lambda_i^{(n)} \Phi_i^{(n)}(y).$$

(8)

By defining

$$a_i^{(1)} = \int dy e^{-\beta V_M(y)/2} \Phi_i^{(2)}(y),$$

$$a_i^{(N)} = \int dy e^{-\beta V_M(y)/2} \Phi_i^{(N)}(y),$$

$$B_{ij} = \sqrt{\lambda_i^{(N)} \lambda_j^{(N)}} a_i^{(N)} a_j^{(1)},$$

$$D_{ij} = \sqrt{\lambda_i^{(N-1)} \lambda_j^{(N)}} \int dy \Phi_i^{(N-1)}(y) \Phi_j^{(N)}(y),$$

(9)

and substituting the kernel expansion of Eq. (7) into Eq. (5), the partition function can be rewritten in the form

$$Z = \sum_{i_2, \ldots, i_N} \prod_{n=2} B_{i_n i_n+1} D_{i_n i_{n+1}} D_n^{(4)} \cdots D^{(N-1)}_{i_{N-1} i_N},$$

(10)

or, equivalently,

$$Z = \text{Tr} [BD^{(3)}D^{(4)} \cdots D^{(N-1)}D^{(N)}],$$

(11)

where B stands for the matrix with elements B_{ij}, $D^{(n)}$ for the matrix with elements $D_{ij}^{(n)}$, and “Tr” indicates that one must take the trace of the product of matrices. Finally, the free energy F, the entropy S, and the specific heat C_V are obtained from Z according to

$$F = -k_B T \ln(Z),$$

$$S = \frac{\partial F}{\partial T},$$

$$C_V = \frac{\partial S}{\partial T}.$$
Calculation of intensive thermodynamical functions proceeds along similar lines. For example, the mean elongation of the \(n\)th base pair can be written in the form

\[
\langle y_n \rangle = \frac{1}{Z} \int dy_1 dy_2 \cdots dy_N e^{-\beta V(y)/2} K_2(y_1,y_2) \times K_3(y_3,y_2) \cdots K_N(y_N,y_{N-1}) e^{-\beta V(y)/2}.
\]

Defining

\[
b_i^{(1)} = \int dy e^{-\beta V(y)/2} \Phi_i^{(2)}(y),
\]

\[
b_i^{(N)} = \int dy e^{-\beta V(y)/2} \Phi_i^{(N)}(y),
\]

\[
C_{ij}^{(1)} = \sqrt{\lambda_i^{(N)} \lambda_j^{(2)}} b_{i1}^{(N)} b_{j1}^{(1)},
\]

\[
C_{ij}^{(N)} = \sqrt{\lambda_i^{(N)} \lambda_j^{(2)}} b_{i1}^{(N)} a_{j1}^{(1)},
\]

\[
Y_{n}^{(m)} = \sqrt{\lambda_i^{(m-1)} \lambda_j^{(m)}} \int dy \Phi_i^{(m-1)}(y) \Phi_j^{(m)}(y),
\]

and substituting Eq. (7) into Eq. (13), the mean elongation is obtained in the form

\[
\langle y_n \rangle = \frac{1}{Z} \text{Tr}(BD^{(3)}D^{(4)} \cdots D^{(m)}Y_1^{(n+1)} D^{(m+1)} \cdots D^{(N)}).
\]

for \(n \neq 1\) and \(n \neq N\), and

\[
\langle y_n \rangle = \frac{1}{Z} \text{Tr}(C^{(m)}D^{(3)}D^{(4)} \cdots D^{(N-1)} D^{(N)}),
\]

at the extremities of the chain—that is, for \(n = 1\) or \(n = N\).

Two-point correlation functions are derived in the same manner. One obtains

\[
\langle y_n y_m \rangle = \frac{1}{Z} \text{Tr}(BD^{(3)}D^{(4)} \cdots D^{(m)}Y_1^{(n+1)} D^{(m+2)} \cdots D^{(N)}),
\]

\[
\langle y_n^2 \rangle = \frac{1}{Z} \text{Tr}(BD^{(3)}D^{(4)} \cdots D^{(m)} Y_1^{(n+1)} D^{(n+1)} \cdots D^{(N)}),
\]

if \(m\) and \(n\) are different from 1 and \(N\),

\[
\langle y_n y_m \rangle = \frac{1}{Z} \text{Tr}(C^{(m)}D^{(3)}D^{(4)} \cdots D^{(m)}Y_1^{(n+1)} D^{(n+1)} \cdots D^{(N)}),
\]

\[
\langle y_n^2 \rangle = \frac{1}{Z} \text{Tr}(E^{(n)}D^{(3)}D^{(4)} \cdots D^{(N-1)} D^{(N)}),
\]

if \(m\) is different from 1 and \(N\) but \(n\) is equal to 1 or \(N\), and

\[
\langle y_N y_{N-1} \rangle = \frac{1}{Z} \text{Tr}(E^{(N)}D^{(3)}D^{(4)} \cdots D^{(N-1)} D^{(N)}).
\]

In Eqs. (17)–(19) we noted

\[
c^{(1)}_i = \int dy e^{-\beta V(y)/2} \Phi_i^{(2)}(y)^2,
\]

\[
c^{(N)}_i = \int dy e^{-\beta V(y)/2} \Phi_i^{(N)}(y)^2,
\]

\[
E_{ij}^{(1)} = \sqrt{\lambda_i^{(N)} \lambda_j^{(2)}} c_{ij}^{(1)},
\]

\[
E_{ij}^{(N)} = \sqrt{\lambda_i^{(N)} \lambda_j^{(2)}} c_{ij}^{(N)},
\]

\[
Y_{n}^{(m)} = \sqrt{\lambda_i^{(m-1)} \lambda_j^{(m)}} \int dy \Phi_i^{(m-1)}(y) \Phi_j^{(m)}(y)^2.
\]

In order to check the accuracy of the TI procedure, we compared melting profiles obtained with this method to those obtained from molecular dynamics (MD) simulations. MD simulations consist in integrating numerically the Langevin equations of motion

\[
m \frac{d^2y_n}{dt^2} = -\frac{\partial H}{\partial y_n} - m \gamma \frac{dy_n}{dt} + \sqrt{2mk_B T} \omega(t).
\]

The second and third terms on the right-hand side of this equation model the effects of the solvent on the sequence. \(\gamma\) is the dissipation coefficient (we assumed \(\gamma = 5 \text{ ns}^{-1}\) as in Refs. [10,11,28]) and \(\omega(t)\) a normally distributed random function with zero mean value and unit variance. Step-by-step integration, with 10-fs steps, was performed by applying a second-order Brünger-Brooks-Karplus integrator [29] to the sequence initially at equilibrium at 0 K and subjected to a temperature ramp of 10 K/ns. This slow heating ensures that the temperature of the system, estimated from its average kinetic energy

\[
T_{\text{kin}} = \frac{2}{Nk_B} \sum_{n=1}^{N} \frac{p_n^2}{2m},
\]

closely follows the temperature \(T\) imposed by the random kicks. Once the required temperature was reached, the Langevin equations were integrated at constant temperature for additional 30 ns in order to bring the system still closer to thermal equilibrium. We finally averaged the base pair separations \(y_n\) over time intervals which varied from 1 \(\mu\)s for temperatures substantially smaller than the melting one up to 5 \(\mu\)s close to melting, in order to correctly average the low-frequency thermal fluctuations which develop close to the critical point [28]. During the averaging process, we went on recording the physical temperature of the system [Eq. (22)], because its final agreement with the imposed temperature \(T\) provides an estimate of the quality of the averaging. For all the results presented below, the differences between the two temperatures were kept below 0.1 K.
that the TI profile looks like as if it consisted of three or four superposed curves. This is most probably due to the conjunction of two phenomena: (i) the heterogeneous DBP model assumes that the Morse interaction for GC base pairs is stronger than that for AT base pairs, and (ii) the resolution of the TI procedure is high enough to reflect the variations of $\langle y_n \rangle$ at the level of single base pairs that result from this difference. To confirm this hypothesis, we checked that the same phenomenon does show up for the JB model. Still, since this model assumes that heterogeneity is carried by stacking interactions instead of on-site potentials, superposed curves essentially appear in the plots of $\langle y_n \rangle$ as a function of n. Moreover, the phenomenon is somewhat attenuated compared to Fig. 4, because the JB model considers ten different stacking enthalpies, while the DBP one considers only two different Morse potential strengths. Finally, Fig. 5 shows the melting curve—that is, the evolution with temperature of the portion of open base pairs—for the 1793-bp actin sequence obtained with the JB model. Although they were computed with different models, this curve compares very well with the one drawn in Fig. 4 of Ref. [11].

In conclusion, the TI procedure appears as a powerful and trustful tool for the computation of the thermodynamic properties of inhomogeneous DNA sequences.

IV. EFFECTS OF DISORDER CLOSE TO MELTING

In this section, we will investigate the role of disorder close to the critical point. In contrast with previous studies...
[22–26], we will not consider disorder-averaged quantities; that is, we will not discuss the statistical physics of an ensemble of random sequences. Instead, we will focus on precise sequences and try to determine if the successive openings that lead to the dissociation of these sequences may be described as phase transitions and eventually address the question of the order of these transitions. To this end, we will study the behavior of the specific heat per particle, \(c_V = C_V/N \), the average bubble depths \(\langle y_n \rangle \), and the correlation length \(\xi \), close to the critical temperature.

A. Critical behavior of \(c_V \)

The evolution of \(c_V \) with temperature was computed for the 1793-bp actin and the 2399-bp inhibitor according to Eqs. (11) and (12). Finite differences were used to estimate the second derivative of \(Z \) in Eq. (12). The results obtained with grids of 2901 values of \(y \) regularly spaced between \(-100/a\) and \(2800/a\) are shown in Fig. 6. The evolution of \(c_V \) in these plots is most easily understood when comparing them to the corresponding profiles in Figs. 1 and 2. The bottom plot in Fig. 1 indeed indicates that the average AT content for the 1793-bp actin sequence is substantially higher for base pairs with \(n > 1150 \). It is seen in the top plot of Fig. 1 that one-third of the sequence (the base pairs with \(n > 1150 \)) consequently melt around 346–348 K, while the remaining two-thirds (the base pairs with \(n \leq 1150 \)) melt at the slightly higher temperature of about 354 K. This two-step denaturation is perfectly reflected in the temperature evolution of \(c_V \) (top plot of Fig. 6), which displays two peaks with 1:2 relative intensities centered around 348 and 354 K. For the 2399-bp inhibitor, the bottom plot of Fig. 2 similarly indicates that the average AT content is rather uniform in the sequence, except that it significantly decreases with decreasing \(n \) for the first 600 base pairs. Not surprisingly, it is accordingly seen in the top plot of Fig. 2 that these first 600 base pairs melt about \(3^\circ \) above the temperature of 352–354 K where the rest of the sequence dissociates. Since this second melting step involves only about one-fourth of the sequence...
and takes place very close to the first step, it merely appears as a shoulder on the high-temperature side of the plot of c_V in the bottom plot of Fig. 6.

In order to learn more about these openings, we next draw log-log plots of the evolution of c_V as a function of the reduced temperature t, defined according to

$$ t = 1 - \frac{T}{T_c}. \quad (23) $$

In the case of homogeneous sequences, the critical temperature T_c that appears in Eq. (23) is unambiguously defined. This is no longer the case when dealing with inhomogeneous sequences, so that in the following we will explicitly state which temperature is used as T_c. Moreover, this kind of plot requires more precision than the previous figures. The calculation of Z in Eq. (11) was therefore performed with grids of 4101 values of y regularly spaced between $-100/a$ and $4000/a$. The result obtained for the JB model and the 2399-bp inhibitor is displayed in the bottom plot of Fig. 7. The solid line shows the result for the 2399-bp inhibitor sequence, while the dashed and dot-dashed lines show results that we previously obtained for a 2000-bp homogeneous sequence and an infinitely long homogeneous sequence, respectively (see the bottom plot of Fig. 3 of Ref. [15]). For the inhomogeneous sequence, T_c was taken as the temperature where c_V is maximum (for the grid with 4201 points, we numerically obtained $T_c=354.34 \text{ K}$), so that the solid line actually deals with the first step of the melting of the inhibitor sequence, that is, the opening of the base pairs with $n > 600$. In Ref. [15], we arrived at the conclusion that the thermodynamics of sequences with a few thousand base pairs are close to that of infinite ones down to $t=10^{-3}$ for the JB model. As a consequence, the curves for the 2000-bp and infinitely long homogeneous sequences are almost superposed above this threshold. Stated in other words, the rounding of the phase transition is hardly noticeable for temperatures which differ from the critical one by more than a few tenths of a degree. Examination of the bottom plot of Fig. 7 further shows that the thermodynamics of the opening of the 1800 base pairs with $n > 600$ of the inhibitor sequence is also very similar to that of the finite ($N=2000$) and infinite homogeneous sequences: rounding is indeed imperceptible about $1^\circ \ (t=3 \times 10^{-3})$ below the critical temperature. The power-law dependence of c_V against t therefore extends over an interval of t values which is sufficiently large to allow for the estimation of the critical exponent α of c_V. One obtains $\alpha=1.07$, which is characteristic of a first-order phase transition.

The top plot of Fig. 7 also displays a log-log plot of the evolution of c_V with t computed, however, with the heterogeneous DBP model. For the grid with 4201 points and this model, we found $T_c=284.24 \text{ K}$. We showed in Ref. [15] that, in contrast with the JB model, sequences with $N=2000$ bp are still far from the thermodynamic limit for the DBP model. Therefore, the dashed curve (homogeneous sequence with $N=2000$ bp) and the dot-dashed one (homogeneous sequence at the thermodynamic limit) are well separated. Examination of this plot also indicates that the (solid) curve for the inhomogeneous 2399-bp inhibitor sequence is...
FIG. 8. (Color online) Log-log plots, as a function of the reduced temperature t, of the average depth $\langle y_n \rangle$ of bubbles centered around $n=1300$, $n=1450$, and $n=1640$ (top plot) and $n=318$ and $n=441$ (bottom plot) for the 1793-bp actin sequence. These results were obtained from TI calculations performed with the JB model. The critical temperature of each portion of the sequence is indicated on the corresponding plot.

again qualitatively close to the (dashed) curve for the homogeneous 2000-bp sequence—and consequently quite separated from the curve for the sequence at the thermodynamic limit.

One might therefore tentatively conclude from the results presented in this subsection that, for a given sequence, the essential effect of heterogeneity is to let different portions of the sequence open at slightly different temperatures. Besides this global effect, the dynamics of the local aperture of each portion is indeed very similar to that of a homogeneous sequence with the same length. We will now investigate the critical behavior of the depth of the bubbles and of the correlation length, in order to check whether they confirm this conclusion.

B. Critical behavior of the bubble depth $\langle y_n \rangle$

As we already noted, the 1793-bp actin sequence opens in two fairly separated steps: the base pairs with $n > 1150$ melt around 348 K, while those with $n < 1150$ melt at the slightly higher temperature of 354 K (see Figs. 1, 5, and 6). Finer details can be observed in Fig. 1. It is indeed seen that melting of the $n > 1150$ portion is driven by three bubbles centered around $n=1300$, $n=1450$, and $n=1610$, while melting of the $n < 1150$ portion is driven by two bubbles centered around $n=318$ and $n=441$, the center of each bubble corresponding to a local maximum of the AT percentage. Figure 8 displays log-log plots of the average depth of each bubble, $\langle y_n \rangle$, as a function of the reduced temperature t, obtained with the JB model. For the three bubbles with $n > 1150$ (top plot), the critical temperature was taken as the temperature $T_c = 348.2$ K of the secondary maximum of the specific heat, while for the two bubbles with $n < 1150$ (bottom plot), the critical temperature was taken as the temperature $T_c = 353.9$ K of the principal maximum of c_V. Figure 8 indicates that (i) the average depth of all bubbles exhibits a power-law dependence against t over a reasonably large interval of temperatures, (ii) the slopes are essentially identical for all bubbles belonging to the same portion of the sequence, and (iii) the critical exponents that can be deduced from these slopes—that is, -1.28 for the bubbles with $n > 1150$ and -1.00 for the bubbles with $n < 1150$—are close to the critical exponent $\beta = -1.31$ we obtained at the thermodynamic limit [12].

C. Critical behavior of the correlation length ξ

At the thermodynamic limit of infinitely long chains, the two-point spatial autocorrelation function

$$C_{ij} = \langle y_i y_j \rangle - \langle y_i \rangle \langle y_j \rangle$$

varies for large values of $|i-j|$ according to

$$C_{ij} \propto \exp(-|i-j|/\xi),$$

where ξ is the correlation length [17]. ξ can consequently be obtained as the inverse of the slope in the plots of $\ln(C_{ij})$ as a function of $|i-j|$. Such plots are shown in Fig. 9 for a homogeneous sequence with 10 000 base pairs described with the homogeneous version of the JB model [10,12,15]. It is seen that the natural logarithm of C_{ij} indeed evolves linearly with $j-i$ over more than 20 orders of magnitude and that the correlation length ξ can be determined very accurately from the slope of these curves. When plotting the val-
values of \(\xi \) obtained in this way as a function of \(t \) (critical temperature is \(T_c = 367.47 \) K), one furthermore recovers the critical exponent \(\nu = 1.23 \) reported in Ref. [12]. Similar plots of \(\ln(C_{ij}) \) as a function of \(j-i \), obtained from Eqs. (15), (17), and (24), are reported in Fig. 10 for the 1793-bp actin sequence described with the JB model. The main plot was obtained by setting \(i = 180 \) and the smaller one by setting \(i = 1250 \). The horizontal and vertical scales are identical for both plots, but the smaller one \(i = 1250 \) was horizontally shifted so that identical values of \(j \) are vertically aligned. These results were obtained from TI calculations performed with the JB model.

Examination of Fig. 10 indicates that all curves in the main plot and some curves in the smaller plot are composed of two segments instead of a single straight line and that the values of \(j \) where the two segments cross approximately coincide, for each temperature, with the boundary between the double-stranded and open portions of the sequence. Moreover, local slopes are much smaller whenever \(t \) and/or \(j \) lie in the open portion of the sequence. By comparing the two plots in Fig. 10, one finally notices that absolute values of \(\ln(C_{ij}) \) are different for different values of \(i \), but that their variations are identical for identical values of \(j \). These two observations suggest that for inhomogeneous sequences the two-point spatial correlation function \(C_{ij} \) still evolves exponentially with \(|j-i| \), as in Eq. (25), but that there exists one different correlation length \(\xi \) for each region that melts independently from the rest of the sequence. Note that it is then quite appropriate to call these regions coherence regions. At last, we checked that the correlation lengths obtained from the slopes of the first segments in the main plot of Fig. 10 evolve as \(t^{-1.13} (T_c = 353.9 \) K, as in the bottom plot of Fig. 8). Therefore, the correlation length critical exponent for the portion of the sequence with \(n > 1150 \) is again close to the above mentioned value \(\nu = 1.23 \) for homogeneous sequences [12].

V. CONCLUSION

In this work, we analyzed the statistical physics of inhomogeneous DNA sequences close to denaturation. Unlike previous studies, which considered disorder-averaged thermodynamic observables, we focused on the successive local openings of precise sequences. To this end, we used the extended TI method of Zhang et al. [14] to investigate the properties of the heterogeneous DPB model [8] and derived a modified version of this method to adapt it to the study of the JB model [10,12,15]. Examination of the critical behavior of the specific heat per particle, \(C_V \), the average bubble depths \(\langle \eta_n \rangle \), and the correlation length \(\xi \) leads to the following conclusions. Both models agree in pointing out that the principal effect of heterogeneity is to let different portions of the sequence open at slightly different temperatures. Besides this global effect, the dynamics of the local aperture of each portion is indeed very similar to that of a homogeneous sequence with the same length. In particular, the local melting transition of each portion is rounded by finite-size effects [15]. Strictly speaking, one should therefore not describe the melting of an inhomogeneous sequence as a succession of phase transitions. When speaking more loosely, such a description is, however, not really wrong, in the sense that the melting of several hundred or a few thousand of base pairs is accompanied by a sharp maximum of the specific heat and a clear step of the entropy (see Fig. 6 and Figs. 2 and 3 of Ref. [15]). The answer to the more involved question concerning the possibility to ascribe an order to these rounded transitions unfortunately turns out to depend on the model which is used to describe DNA. Indeed, for the JB model, sequences (or portions thereof) with several hundred to a few thousand base pairs are already rather close to the thermodynamic limit (see the bottom plot of Fig. 7 and Figs. 3 and 4 of Ref. [15]), so that power laws are observed over significant temperature intervals. For the 2399-bp inhibitor and the 1793-bp actin sequences, the values of the critical exponents estimated on these temperature intervals turn out to be close to those of homogeneous sequences at the thermodynamic limit. In particular the specific heat critical exponent we obtained for the opening of the 1800 base pairs with \(n > 600 \) of the inhibitor sequence, \(\alpha = 1.07 \), is characteristic of a first-order phase transition. Of course, it is not possible to draw a general conclusion from a single example, but this calculation still has the merit of showing that disorder does not necessarily reduce the order of the transition. In contrast, for the DPB model, sequences with a few thousands base pairs are still quite far from the thermodynamic limit (see the top plot of Fig. 7 and Fig. 3 of Ref. [15]), so that it is not appropriate to discuss the order of the melting transition for inhomogeneous sequences described by this model.

Last but not least, it should be emphasized that the two Morse parameters \(D_n \) for AT and GC pairing and the ten
stacking enthalpies $\Delta H \alpha$ cannot be extracted independently from experimental denaturation curves [31–33]. It has, however, been shown recently how these 12 quantities can be obtained from the properties of nicked DNA [32,33]. The free energies reported in Table I of Ref. [33] indicate that heterogeneity in improved dynamical models of DNA secondary structure should be carried by both pairing and stacking energies. It will therefore be very instructive to build a dynamical model centered on these data and check whether the description of the melting phase transition of inhomogeneous DNA obtained from this model matches that obtained with the DPB or the JB models (note that the new parameters have already been used in statistical models; see [34]). Aside from the adjustment of the remaining free parameters of the model against experimental melting curves, the major difficulty of this task will consist in establishing a TI calculation procedure that allows one to take into account the heterogeneity of both pairing and stacking energies.