Large deviations of additive observables in simple interacting particle systems: equilibrium & non-equilibrium

Marc Cheneau1, Juan P. Garrahan2, Frédéric van Wijland3
Cécile Appert-Rolland4, Bernard Derrida5, Alberto Imparato6

1Institut d’Optique, Palaiseau 2Nottingham University 3MSC, Paris
4LPT, Orsay 5LPS, ENS, Paris 6Aarhus University

Bonn – December 10th 2015
Classical and quantum dynamics

What one gains from forgetting probabilities and turning to the quantum world
Classical and quantum dynamics

What one gains from forgetting probabilities and turning to the quantum world

- Correspondence
 - generator of **stochastic** classical system
 - Hamiltonian of **quantum** XXZ chain

(Well known at least in the stat. mech. community.)
Classical and quantum dynamics

What one gains from forgetting probabilities and turning to the quantum world

- Correspondence
 - generator of stochastic classical system
 - Hamiltonian of quantum XXZ chain
 (Well known at least in the stat. mech. community.)

- Use: dictionary between
 - regimes of large deviations of dynamical (i.e. additive) observables
 - phases across a Quantum Phase Transition
Classical and quantum dynamics

What one gains from forgetting probabilities and turning to the quantum world

- **Correspondence**
 - generator of *stochastic* classical system
 - Hamiltonian of *quantum* XXZ chain

(Well known at least in the stat. mech. community.)

- **Use:** dictionary between
 - regimes of *large deviations* of *dynamical* (*i.e.* additive) observables
 - phases across a Quantum Phase Transition

- **Perspectives opened; questions raised**
 - finite-size effects
 - large-/small-scale spectrum

[I will ask questions to *you.*]
Exclusion Processes – generic settings

- Configurations: occupation numbers \(\{n_i\} \)
- Exclusion rule: \(0 \leq n_i \leq N \)
- Markov evolution for the probability \(P(\{n_i\}, t) \)
 \[
 \partial_t P(\{n_i\}, t) = \sum_{n_i'} \left[W(n_i' \to n_i) P(\{n_i'\}, t) - W(n_i \to n_i') P(\{n_i\}, t) \right]
 \]
- Large deviation function of “additive” observables \(A \)
 \[
 \langle e^{-sA} \rangle \sim e^{t \psi(s)}
 \]

\(A = \) total current \(Q \) on time window \([0, t]\)
\(A = \) total activity \(K \) on time window \([0, t]\)
Exclusion Processes – generic settings

- Configurations: occupation numbers \(\{n_i\} \)
- Exclusion rule: \(0 \leq n_i \leq N \)
- Markov evolution for the **probability** \(P(\{n_i\}, t) \)
 \[
 \partial_t P(\{n_i\}, t) = \sum_{n'_i} \left[W(n'_i \to n_i) P(\{n'_i\}, t) - W(n_i \to n'_i) P(\{n_i\}, t) \right]
 \]
- Large deviation function of “additive” observables \(A \)
 \[
 \langle e^{-sA} \rangle \sim e^{t \psi(s)}
 \]
 \((\Leftrightarrow \text{determining } P(A, t)) \)
 \[
 A = \text{total current } Q \text{ on time window } [0, t] = \# \text{jumps} - \text{jumps}
 \]
 \[
 A = \text{total activity } K \text{ on time window } [0, t] = \# \text{jumps} + \text{jumps}
 \]
Exclusion Processes – generic settings

- Configurations: occupation numbers \(\{n_i\} \)
- Exclusion rule: \(0 \leq n_i \leq N \)
- Markov evolution for the probability \(P(\{n_i\}, t) \)

\[
\partial_t P(\{n_i\}, t) = \sum_{n_i'} \left[W(n_i' \rightarrow n_i) P(\{n_i'\}, t) - W(n_i \rightarrow n_i') P(\{n_i\}, t) \right]
\]

- Large deviation function of “additive” observables \(A \)

\[
\langle e^{-sA} \rangle \sim e^{t \psi(s)} \quad (\Leftrightarrow \text{determining } P(A, t))
\]

\(A = \) total current \(Q \) on time window \([0, t]\)

\(A = \) total activity \(K \) on time window \([0, t]\)

\(A = \# \text{jumps} - \text{jumps} \)

\(A = \# \text{jumps} + \text{jumps} \)
Operator representation

\[\text{Evolution of probability vector } P: \]
\[
\partial_t P = \mathbb{W} P
\]
\[
\mathbb{W} = \sum_{1 \leq k \leq L-1} \left[S^+_k S^-_{k+1} + S^-_k S^+_ {k+1} - \hat{n}_k \hat{n}_{k+1} - \hat{n}_{k+1} \hat{n}_k \right]
\]
\[
\quad + \alpha \left[S^+_1 - \hat{n}_1 \right] + \gamma \left[S^-_1 - \hat{n}_1 \right]
\]
\[
\quad + \delta \left[S^+_L - \hat{n}_L \right] + \beta \left[S^-_L - \hat{n}_L \right]
\]
\[
[\hat{n} = N - \hat{n}]
\]
\[S^\pm = S^x \pm iS^y \text{ and } S^z = \hat{n} - \frac{N}{2} \text{ are spin operators (of “spin” } j = \frac{N}{2}\text{)}
\]
Operator representation

\[\rho_0 \quad \rho_1 \]

Evolution of probability vector \(P \):

\[\partial_t P = \mathbb{W} P \]

\[\mathbb{W} = \sum_{1 \leq k \leq L-1} \left[S_k^+ S_{k+1}^- + S_k^- S_{k+1}^+ - \hat{n}_k \hat{n}_{k+1} - \hat{n}_{k+1} \hat{n}_k \right] + \alpha \left[S_1^+ - \hat{n}_1 \right] + \gamma \left[S_1^- - \hat{n}_1 \right] + \delta \left[S_L^+ - \hat{n}_L \right] + \beta \left[S_L^- - \hat{n}_L \right] \]

\[S^\pm = S^x \pm i S^y \quad \text{and} \quad S^z = \hat{n} - \frac{N}{2} \quad \text{are spin operators (of “spin” } j = \frac{N}{2} \text{)} \]

densities \(\rho_0 = \frac{\alpha}{\alpha + \gamma} \); \(\rho_1 = \frac{\delta}{\delta + \beta} \); contact rates \(a_0 = \frac{\alpha}{\gamma} \); \(a_1 = \frac{\delta}{\beta} \)
Evolution of probability vector P:

$$\partial_t P = \mathbb{W} P$$

$$\mathbb{W} = \sum_{1 \leq k \leq L-1} \left[S_k^+ S_{k+1}^- + S_k^- S_{k+1}^+ - \hat{n}_k \hat{n}_{k+1} - \hat{n}_{k+1} \hat{n}_k \right]$$

$$+ \alpha \left[S_1^+ - \hat{n}_1 \right] + \gamma \left[S_1^- - \hat{n}_1 \right]$$

$$+ \delta \left[S_L^+ - \hat{n}_L \right] + \beta \left[S_L^- - \hat{n}_L \right]$$

$$[\hat{n} = N - \hat{n}]$$

$S^\pm = S^x \pm iS^y$ and $S^z = \hat{n} - \frac{N}{2}$ are spin operators (of “spin” $j = \frac{N}{2}$)

XXX spin chain Hamiltonian (up to boundary terms and constants).
Operator representation for **large deviations**

\[
\langle e^{-sK} \rangle \sim e^{t\psi(s)} \quad \text{with} \quad \psi(s) = \max \text{Sp} \ W_s
\]

\[
W_s = \sum_{1 \leq k \leq L-1} \left[e^{-s} S_k^+ S_{k+1}^- + e^{-s} S_k^- S_{k+1}^+ - \hat{n}_k \hat{n}_{k+1} - \hat{n}_{k+1} \hat{n}_k \right] \\
+ \alpha \left[e^{-s} S_1^+ - \hat{n}_1 \right] + \gamma \left[e^{-s} S_1^- - \hat{n}_1 \right] \\
+ \delta \left[e^{-s} S_L^+ - \hat{n}_L \right] + \beta \left[e^{-s} S_L^- - \hat{n}_L \right]
\]

for the **activity** \(K: \) **XXZ spin chain Hamiltonian**
Operator representation for large deviations

\[\langle e^{-sQ} \rangle \sim e^{t\psi(s)} \quad \text{with} \quad \psi(s) = \max S \mathbb{W}_s \]

\[\mathbb{W}_s = \sum_{1 \leq k \leq L-1} \left[e^{sS_k^+} S_{k+1}^- + e^{-sS_k^-} S_{k+1}^+ - \hat{n}_k \hat{n}_{k+1} - \hat{n}_{k+1} \hat{n}_k \right] \]

\[+ \alpha \left[e^{-sS_1^+} - \hat{n}_1 \right] + \gamma \left[e^{sS_1^-} - \hat{n}_1 \right] \]

\[+ \delta \left[e^{sS_L^+} - \hat{n}_L \right] + \beta \left[e^{-sS_L^-} - \hat{n}_L \right] \]

for the current \(Q \): “asymmetric” XXZ spin chain Hamiltonian
Example 1: use of rotational symmetry
map non-equilibrium current fluctuations
to equilibrium current fluctuations
Mapping non-eq to eq

[Imparato, VL, van Wijland, PTPS 184 276]

Large deviations of the current

\[\psi(s) = \max \text{Sp} \ W(s) \]

\[
W(s) = \sum_{1 \leq k \leq L-1} \langle \hat{S}_k \cdot \hat{S}_{k+1} \rangle + \text{constant} \\
+ \alpha [S_1^+ - \hat{n}_1] + \gamma [S_1^- - \hat{n}_1] \\
+ \delta [S_L^+ e^s - \hat{n}_L] + \beta [S_L^- e^{-s} - \hat{n}_L]
\]
Mapping non-eq to eq

[Imparato, VL, van Wijland, PTPS 184 276]

Large deviations of the current

\[\psi(s) = \max \text{Sp} \ W(s) \]

\[W(s) = \sum_{1 \leq k \leq L-1} \vec{S}_k \cdot \vec{S}_{k+1} \]

\[+ \alpha [S_1^+ - \hat{n}_1] + \gamma [S_1^- - \hat{n}_1] \]

\[+ \delta [S_L^+ e^s - \hat{n}_L] + \beta [S_L^- e^{-s} - \hat{n}_L] \]

Local transformation

\[Q^{-1} W(s) Q = \sum_{1 \leq k \leq L-1} \vec{S}_k \cdot \vec{S}_{k+1} \]

\[+ \alpha' [S_1^+ - \hat{n}_1] + \gamma' [S_1^- - \hat{n}_1] \]

\[+ \delta' [S_L^+ e^{s'} - \hat{n}_L] + \beta' [S_L^- e^{-s'} - \hat{n}_L] \]

describes contact with reservoirs of same densities
SO(3) symmetry [Imparato, VL, van Wijland, PTPS 184 276]

Detailed transformation: (on one site)

\[Q = 1 + xS^x - iyS^y + zS^z \] (invertible)

performs a rotation of the vector \(S = (S^x, S^y, S^z) \) of spin operators

\[Q^{-1}S^xQ = (RS)_1 \quad Q^{-1}S^yQ = (RS)_2 \quad Q^{-1}S^zQ = (RS)_3 \]

for some SO(3) rotation matrix \(R \).
SO(3) symmetry

[Imparato, VL, van Wijland, PTPS 184 276]

Detailed transformation: (on one site)

\[Q = 1 + xS^x - iyS^y + zS^z \]

(invertible)

performs a rotation of the vector \(S = (S^x, S^y, S^z) \) of spin operators

\[Q^{-1}S^x Q = (RS)_1 \quad Q^{-1}S^y Q = (RS)_2 \quad Q^{-1}S^z Q = (RS)_3 \]

for some SO(3) rotation matrix \(R \).

Form of the matrix: (Cayley form)

\[R = (I + A)(I - A)^{-1} \]

\[A = \begin{pmatrix} 0 & -iz & y \\ iz & 0 & -ix \\ -y & ix & 0 \end{pmatrix} \]
Large deviations

[Imparato, VL, van Wijland, PTPS 184 276]

Result: (transforming all sites)

\[Q^{-1} \mathbb{W}_{\text{res}}(s; \rho_0, \rho_1; a_0, a_1) Q = \mathbb{W}_{\text{res}}(s'; \rho_0', \rho_1'; a_0, a_1) \]

with “primed” variables

\[
\rho_0' = \frac{(1 + x) \rho_0 - x - z}{1 - x} \\
\rho_1' = (x + e^{-s} - z(1 - e^{-s})) \frac{[x + e^s + z(1 - e^s)] \rho_1 - x - z}{1 - x^2} \\
e^{-s'} = \frac{x + e^{-s} + z(e^{-s} - 1)}{1 + xe^{-s} + z(e^{-s} - 1)}
\]
Symmetric exclusion process

System in equilibrium

\[\rho_0 \]

\[\rho' \]

Local transformation

\[\text{Prob}_{\text{non-eq}}^{\text{stationn.}} \text{ (current)} \]

\[\text{Prob}_{\text{eq}}^{\text{stationn.}} \text{ (current')} \]
Probabilistic interpretation

Measure $\hat{P}(n, s, t)$ biased by e^{-sQ}

Mapping:

$$\hat{P}(n, s, t; \rho_0, \rho_1; a_0, a_1) = \langle n | e^{tW(s; \rho_0, \rho_1; a_0, a_1)} | P_{\text{init}} \rangle$$

$$= \langle n | Q e^{tW(s'; \rho_0', \rho_1'; a_0, a_1)} Q^{-1} | P_{\text{init}} \rangle$$

- new projection state
- new initial condition
Probabilistic interpretation

Measure $\hat{P}(n, s, t)$ biased by e^{-sQ}

Mapping: $\hat{P}(n,s, t; \rho_0, \rho_1; a_0, a_1) = \langle n | e^{tW(s; \rho_0, \rho_1; a_0, a_1)} | P_{\text{init}} \rangle = \langle n | Q e^{tW(s'; \rho_0', \rho_1'; a_0, a_1)} Q^{-1} | P_{\text{init}} \rangle$

new projection state new initial condition

Question: What is the mathematical embedding (in terms of process & prob.)? (Duality, Radon-Nykodym? caveat: prob. not preserved)

Generalization:

★ higher dimensions
★ generic network and current
★ more than two reservoirs
★ see also: Derrida & Gerschenfeld (ω variable)

Akkermans, Bodineau, Derrida & Shpielberg (1d LDF for $d > 1$)
Example 2: exclusion process on a ring
Focus on a simple situation

Simple exclusion process (SSEP): max. occupation $N = 1$; spins $S \rightarrow \sigma$

Periodic boundary conditions
Focus on a simple situation

Simple exclusion process (SSEP): max. occupation $N = 1$; spins $S \leftrightarrow \sigma$

Periodic boundary conditions
Fixed total particle number N_0

Density: $\rho_0 = N_0 / L$

Ring geometry
Focus on a simple situation \(s \leftrightarrow \text{activity } K \)

Simple exclusion process (SSEP): max. occupation \(N = 1 \); spins \(S \leftrightarrow \sigma \)

Periodic boundary conditions

Fixed total particle number \(N_0 \)

Density: \(\rho_0 = N_0/L \)

\[
W_s = \sum_{k=1}^{L-1} \left[e^{-s} \left(\sigma_k^+ \sigma_{k+1}^- + \sigma_k^+ \sigma_{k+1}^- \right) - \hat{n}_k(1 - \hat{n}_{k+1}) - (1 - \hat{n}_k)\hat{n}_{k+1} \right] \\
= \frac{L - 1}{2} - \frac{e^{-s}}{2} \mathcal{H} \Delta \\
\mathcal{H} \Delta = -\sum_{k=1}^{L-1} \left[\sigma_k^x \sigma_{k+1}^x + \sigma_k^y \sigma_{k+1}^y + \Delta \sigma_k^z \sigma_{k+1}^z \right] \quad \text{with} \quad \Delta = e^s
Classical/Quantum dictionary

<table>
<thead>
<tr>
<th>SSEP</th>
<th>Quantum Spin Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>local occupation number n_k $(1 \leq k \leq L)$</td>
<td>local spin σ_k^z $(1 \leq k \leq L)$</td>
</tr>
<tr>
<td>$n_k = 0, 1 \equiv \circ, \bullet$</td>
<td>$\sigma_k^z = 1, -1 \equiv \uparrow, \downarrow$</td>
</tr>
<tr>
<td>(fixed) total occupation $N_0 \equiv \rho_0 L$</td>
<td>(fixed) total magnetization $M \equiv m_0 L$</td>
</tr>
<tr>
<td>(mesoscopic) density $\rho(x)$ $(0 \leq x \leq 1)$</td>
<td>(mesoscopic) magnet. $m(x)$ $(0 \leq x \leq 1)$</td>
</tr>
</tbody>
</table>
Classical/Quantum dictionary

<table>
<thead>
<tr>
<th>SSEP</th>
<th>Quantum Spin Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>local occupation number $n_k ,(1 \leq k \leq L)$</td>
<td>local spin $\sigma_k^z ,(1 \leq k \leq L)$</td>
</tr>
<tr>
<td>[n_k = 0, 1 \equiv \circ, \bullet]</td>
<td>[\sigma_k^z = 1, -1 \equiv \uparrow, \downarrow]</td>
</tr>
<tr>
<td>(fixed) total occupation $N_0 \equiv \rho_0 L$</td>
<td>(fixed) total magnetization $M \equiv m_0 L$</td>
</tr>
<tr>
<td>(mesoscopic) density $\rho(x) ,(0 \leq x \leq 1)$</td>
<td>(mesoscopic) magnet. $m(x) ,(0 \leq x \leq 1)$</td>
</tr>
<tr>
<td>evolution operator $s \leftrightarrow$ activity K</td>
<td>ferromagnetic XXZ Hamiltonian ($J_{xy} = -1$)</td>
</tr>
<tr>
<td>[\mathbb{W}s = \frac{L - 1}{2} - \frac{e^{-s}}{2} \mathbb{H}\Delta]</td>
<td>[\mathbb{H}\Delta = \sum{k=1}^{L-1} \left[J_{xy} (\sigma_k^x \sigma_{k+1}^x + \sigma_k^y \sigma_{k+1}^y) + J_z \sigma_k^z \sigma_{k+1}^z \right]]</td>
</tr>
<tr>
<td>counting factor $\Delta = e^s$ of the activity K</td>
<td>anisotropy $\Delta = -J_z$ along direction z</td>
</tr>
<tr>
<td>cumulant generating function</td>
<td>ground state energy</td>
</tr>
<tr>
<td>[\psi(s) = \max \text{Sp} , \mathbb{W}_s = \frac{L-1}{2} - \frac{e^{-s}}{2} E_L(s)]</td>
<td>[E_L(s) = \min \text{Sp} , \mathbb{H}_\Delta]</td>
</tr>
</tbody>
</table>
Bethe Ansatz

[Appert, Derrida, VL, van Wijland, PRE 78 021122]
Bethe Ansatz

Coordinate Bethe Ansatz: Integrability known from long ; difficulty: $L \to \infty$

- eigenvector of components

$$\sum_{\mathcal{P}} A(\mathcal{P}) \prod_{i=1}^{N_0} [\zeta_{\mathcal{P}(i)}]^{x_i}$$

- eigenvalue

$$\psi(s) = -2N_0 + e^{-s}[\zeta_1 + \ldots + \zeta_{N_0}] - e^{-s} \left[\frac{1}{\zeta_1} + \ldots + \frac{1}{\zeta_{N_0}} \right]$$

- Bethe equations

$$\zeta_i^L = \prod_{j=1}^{N_0} \left[-\frac{1 - 2e^s \zeta_i + \zeta_i \zeta_j}{1 - 2e^s \zeta_j + \zeta_i \zeta_j} \right]$$
Bethe Ansatz

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Repartition of Bethe roots in the complex plane

- ●: finite-size solution
- ○: infinite-size limit
Finite-size effects

- large deviation function

\[\psi(s) = -2L\rho_0(1 - \rho_0)s + L^{-2}\mathcal{F}(u) + \ldots \quad \text{with} \quad u = L^2\rho_0(1 - \rho_0)s \]

- universal function (singular in \(u = \frac{\pi^2}{2} \))

\[\mathcal{F}(u) = \sum_{k \geq 2} \frac{(-2u)^kB_{2k-2}}{\Gamma(k)\Gamma(k+1)} \]
Finite-size effects

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

- large deviation function

\[\psi(s) = -2L\rho_0(1 - \rho_0)s + L^{-2}F(u) + \ldots \quad \text{with} \quad u = L^2\rho_0(1 - \rho_0)s \]

- universal function (singular in \(u = \frac{\pi^2}{2} \))
Finite-size effects

- Large deviation function
 \[\psi(s) = -2L\rho_0(1 - \rho_0)s + \frac{L^{-2}F(u)}{\rho_0} + \ldots \quad \text{with} \quad u = L^2\rho_0(1 - \rho_0)s \]

- Universal function (singular in \(u = \frac{\pi^2}{2} \))

![Non-analyticity](image)

Non-analyticity \(F(u) \) dynamical phase transition at \(s_c = \frac{\pi^2}{2L^2\rho_0(1 - \rho_0)}u \)
Macroscopic limit

A reminder: propagator in quantum mechanics

\[\langle \text{final} \mid e^{itH} \mid \text{initial} \rangle \]
Macroscopic limit

A reminder: propagator in quantum mechanics

\[
\langle \text{final} \mid e^{it\mathcal{H}} \mid \text{initial} \rangle = \int dz_1 \ldots dz_n \langle \text{final} \mid e^{i\Delta t\mathcal{H}} \mid z_n \rangle \langle z_{n-1} \mid e^{i\Delta t\mathcal{H}} \mid z_{n-2} \rangle \ldots \\
\ldots \langle z_1 \mid e^{i\Delta t\mathcal{H}} \mid \text{initial} \rangle \\
= \int \mathcal{D}p\mathcal{D}q \exp\{i\frac{1}{\hbar}S[p, q]\}
\]

where \(p = p(x, t) \) and \(q = q(x, t) \) are generically space- & time-dependent fields.

“semi-classical limit” recovered in the large \(\frac{1}{\hbar} \) limit [saddle-point]
Macroscopic limit

For exclusion processes using \(SU(2)\) coherent states:

\[
\langle \rho_f | e^{tW} | \rho_i \rangle = \int_{\rho(0)=\rho_i} \mathcal{D}\rho \mathcal{D}\hat{\rho} \exp\{L \mathcal{S}[\hat{\rho}, \rho]\}
\]
Macroscopic limit

For exclusion processes

Using \(SU(2) \) coherent states:

\[
\langle \rho_f | e^{t\mathcal{W}} | \rho_i \rangle = \int_{\rho(0)=\rho_i}^{\rho(t)=\rho_f} \mathcal{D}\rho\mathcal{D}\hat{\rho} \ exp\{L S[\hat{\rho}, \rho]\} \\
\langle e^{-sK} \rangle \sim \langle \rho_f | e^{t\mathcal{W}_s} | \rho_i \rangle = \int_{\rho(0)=\rho_i}^{\rho(t)=\rho_f} \mathcal{D}\rho\mathcal{D}\hat{\rho} \ exp\{L S_s[\hat{\rho}, \rho]\}
\]

Again: use saddle-point to handle the large \(L \) limit.
Macroscopic limit

For exclusion processes

Same $S_s[\hat{\rho}, \rho]$ as the MSR action of the Langevin evolution:

$$\partial_t \rho(x, t) = -\partial_x \left[-\partial_x \rho(x, t) + \xi(x, t) \right]$$

$$\langle \xi(x, t) \xi(x', t') \rangle = \frac{1}{L} \rho(x, t) (1 - \rho(x, t)) \delta(x' - x) \delta(t' - t)$$

One recovers the action of fluctuating hydrodynamics $[L \to \infty]$

[Spohn; Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim]
Macroscopic approach

Hydrodynamic limit

Macroscopic limit

[Tailleur, Kurchan, VL, JPA 41 505001]

For exclusion processes

Same $S_s[\hat{\rho}, \rho]$ as the MSR action of the Langevin evolution:

$$\partial_t \rho(x, t) = -\partial_x \left[-\partial_x \rho(x, t) + \xi(x, t) \right]$$

$$\langle \xi(x, t)\xi(x', t') \rangle = \frac{1}{L} \rho(x, t) (1 - \rho(x, t)) \delta(x' - x) \delta(t' - t)$$

One recovers the action of fluctuating hydrodynamics \[L \rightarrow \infty \]

[Spohn; Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim]

And obtains non-trivial finite-size corrections \[\text{lattice contribs.} \]

(those affecting the saddle, not the fluctuations around it)
$\psi(s)$: again

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Periodic boundary conditions
More general fluctuating hydrodynamics

\[
\frac{1}{L_t} \langle Q \rangle \propto D(\rho) \quad \text{(Fourier's law)}
\]

\[
\frac{1}{L_t} \langle Q^2 \rangle_c = \sigma(\rho) \quad \text{(For the SSEP, } \sigma(\rho) = \rho(1 - \rho))
\]
$\psi(s)$: again

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Periodic boundary conditions
More general fluctuating hydrodynamics

$$\frac{1}{L_t} \langle Q \rangle \propto D(\rho)$$

(Fourier’s law)

$$\frac{1}{L_t} \langle Q^2 \rangle_c = \sigma(\rho)$$

(For the SSEP, $\sigma(\rho) = \rho(1 - \rho)$)

Saddle point evaluation

$$\langle e^{-sK} \rangle \sim \int \mathcal{D} \rho \mathcal{D} \hat{\rho} \exp\{L S_s[\hat{\rho}, \rho]\}$$
\(\psi(s) \): again

[Appert, Derrida, VL, van Wijland, PRE 78 021122]

Periodic boundary conditions
More general fluctuating hydrodynamics

\[
\frac{1}{L_t} \langle Q \rangle \propto D(\rho) \quad \text{(Fourier’s law)}
\]

\[
\frac{1}{L_t} \langle Q^2 \rangle_c = \sigma(\rho) \quad \text{(For the SSEP, } \sigma(\rho) = \rho(1 - \rho)\text{)}
\]

Saddle point evaluation

\[
\langle e^{-sK} \rangle \sim \int \mathcal{D}\rho \mathcal{D}\hat{\rho} \, \exp\{L S_s[\hat{\rho}, \rho]\}
\]

Large deviation function

[assuming uniform profile \(\rho(x) = \rho \)]

\[
\psi(s) = -s \frac{\langle K \rangle_c}{t} \quad \text{at saddle-point}
+ L^{-2} D \mathcal{F}(u) \quad \text{with} \quad u = L^2 s \frac{\sigma(\rho_0) \sigma''(\rho_0)}{8D^2}
\]

\int \text{of quadratic fluctuations}
Correspondence between the (Gaussian) integration of small fluctuations AND discreteness of Bethe root repartition.

More general?
Correspondence between the (Gaussian) integration of small fluctuations AND discreteness of Bethe root repartition.

More general?

Repartition of Bethe roots for $s > s_c$?
Correspondence between
the (Gaussian) integration of small fluctuations
AND
discreteness of Bethe root repartition.

More general?

Repartition of Bethe roots for $s > s_c$?

Fluctuating hydrodynamics for quantum chains?
Dynamical phase transition \([VL, Garrahan, van Wijland, JPA 45 175001]\)

Rescaling of the large deviation function \([\text{singularity at } \lambda_c > 0 \text{ as } L \rightarrow \infty]\)

\[\varphi(\lambda) = \lim_{L \rightarrow \infty} L \psi(\lambda/L^2)\]

Using the correct non-uniform saddle-point profile for \(\lambda > \lambda_c\)

\[\lambda_c = \frac{\pi^2}{\sigma(\rho_0)}\]
(can be large!)

\(\varphi(\lambda)\)

\(\lambda_c\)

non-uniform profile

uniform profile
Dynamical phase transition [VL, Garrahan, van Wijland, JPA 45 175001]

Rescaling of the large deviation function [singularity at $\lambda_c > 0$ as $L \to \infty$]

$$\varphi(\lambda) = \lim_{L \to \infty} L \psi(\lambda/L^2)$$

Using the correct non-uniform saddle-point profile for $\lambda > \lambda_c$

$\lambda_c = \frac{\pi^2}{\sigma(\rho_0)}$

(can be large!)

see also: for LDF of Q
[Bodineau, Derrida, PRE 78 021122]
phase transition in WASEP for large dev. (non-stationary profile)
[Jona-Lasinio et al.]
generic criterion for instability
Dynamical phase transition \cite{VL, Garrahan, van Wijland, JPA 45 175001}

Optimal saddle-point profile $\rho(x)$

Increasing λ ($\lambda > \lambda_c$)
<table>
<thead>
<tr>
<th>SSEP</th>
<th>Quantum Spin Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>local occupation number $n_k \ (1 \leq k \leq L)$</td>
<td>local spin $\sigma_k^z \ (1 \leq k \leq L)$</td>
</tr>
<tr>
<td>$n_k = 0, 1 \equiv \circ, \bullet$</td>
<td>$\sigma_k^z = 1, -1 \equiv \uparrow, \downarrow$</td>
</tr>
<tr>
<td>(fixed) total occupation $N_0 \equiv \rho_0 L$</td>
<td>(fixed) total magnetization $M \equiv m_0 L$</td>
</tr>
<tr>
<td>(mesoscopic) density $\rho(x) \ (0 \leq x \leq 1)$</td>
<td>(mesoscopic) magnet. $m(x) \ (0 \leq x \leq 1)$</td>
</tr>
<tr>
<td>evolution operator $\mathbb{W}_s \quad s \leftrightarrow$ activity K</td>
<td>ferromagnetic XXZ Hamiltonian \mathbb{H}_Δ</td>
</tr>
<tr>
<td>cumulant generating function $\psi(s)$</td>
<td>ground state energy $E_L(s)$</td>
</tr>
<tr>
<td>SSEP</td>
<td>Quantum Spin Chain</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>local occupation number $n_k \ (1 \leq k \leq L)$</td>
<td>local spin $\sigma_k^z \ (1 \leq k \leq L)$</td>
</tr>
<tr>
<td>$n_k = 0, 1 \equiv \circ, \bullet$</td>
<td>$\sigma_k^z = 1, -1 \equiv \uparrow, \downarrow$</td>
</tr>
<tr>
<td>(fixed) total occupation $N_0 \equiv \rho_0 L$</td>
<td>(fixed) total magnetization $M \equiv m_0 L$</td>
</tr>
<tr>
<td>(mesoscopic) density $\rho(x) \ (0 \leq x \leq 1)$</td>
<td>(mesoscopic) magnet. $m(x) \ (0 \leq x \leq 1)$</td>
</tr>
<tr>
<td>evolution operator W_s</td>
<td>ferromagnetic XXZ Hamiltonian H_Δ</td>
</tr>
<tr>
<td>cumulant generating function $\psi(s)$</td>
<td>ground state energy $E_L(s)$</td>
</tr>
<tr>
<td>minimal activity phase ($s \to +\infty$)</td>
<td>Ising ferromagnetic order ($\Delta \to +\infty$)</td>
</tr>
<tr>
<td>⋮ ⋮</td>
<td>⋮ ⋮</td>
</tr>
<tr>
<td>maximal activity phase ($s \to -\infty$)</td>
<td>XY degenerate groundstate ($\Delta = 0$)</td>
</tr>
<tr>
<td>⋮ ⋮</td>
<td>⋮ ⋮</td>
</tr>
<tr>
<td>& ⋮ &</td>
<td>⋮ &</td>
</tr>
<tr>
<td>time t (steady state: $t \to +\infty$)</td>
<td>inverse temp. β (zero-temp. limit: $\beta \to +\infty$)</td>
</tr>
<tr>
<td>dynamical partition function $\langle e^{-sK} \rangle \simeq \text{Tr} \ e^{tW_s}$</td>
<td>partition function $Z_{\beta}^{XXZ}(\Delta) = \text{Tr} \ e^{-\beta H_{\Delta}}$</td>
</tr>
</tbody>
</table>
Sketch of derivation [VL, Garrahan, van Wijland, JPA 45 175001]

Saddle-point equations for the profile $\rho(x)$ take the form

$$(\partial_x \rho(x))^2 + E_P(\rho(x)) = 0$$
Saddle-point equations for the profile $\rho(x)$ take the form

$$\left(\partial_x \rho(x) \right)^2 + E_P(\rho(x)) = 0$$

Motion in “time” x of a particle of “position” ρ in a “Potential energy” $E_P(\rho)$
Sketch of derivation

[VL, Garrahan, van Wijland, JPA 45 175001]

Saddle-point equations for the profile $\rho(x)$ take the form

$$
\left(\partial_x \rho(x) \right)^2 + E_P(\rho(x)) = 0
$$

Motion in “time” x of a particle of “position” ρ in a “Potential energy” $E_P(\rho)$

“Oscillations” depict the non-uniform profile $\rho(x)$
Excitations

What about solutions with *more than one* kink + anti-kink?

\[\varphi(\lambda) \]

- \[\lambda_c \]
- \[4\lambda_c \]

Corresponding profiles \(\rho(x) \)
Small sizes: the ground state

Aim: experimental realizations with cold atoms
→ non-periodic (but isolated, 1D) system
→ smaller sizes & finite-temperature & excited state

\[\varphi(\lambda) \]
Small sizes: the full spectrum

$L = 9$ sites
$N_0 = 3$ particles
Small sizes: the full spectrum

$L = 9$ sites
$N_0 = 3$ particles

LDF symmetries and quantum mechanics
Bonn – Dec 10th 2015
Small sizes: the full spectrum

$L = 9$ sites
$N_0 = 3$ particles

infinite-size ground state
infinite-size excited states
Small sizes: the full spectrum

$L = 9$ sites
$N_0 = 3$ particles

infinite-size ground state
infinite-size excited states

gathering(?) of microscopic eigenvalues \rightarrow macroscopic ($L = \infty$) states
Summary

Microscopic approach:
- operator formalism
- XXZ spin chain
- Bethe Ansatz

Macroscopic approach:
- MFT, saddle-point method, dynamical phase transition

Questions:
- Finite-size crossover around a quantum phase transition? Between:
 - Luttinger Liquid ($s \neq 1$)
 - Phase-separated ferromagnet ($s \neq 1 + 1$)
- Across the transition: continuum spectrum! gaped spectrum?
- XXZ transition not at $\Delta = 1$ but at $\Delta = 1 + O(L^2)$
- Are scaling exponents/functions known? Are they interesting?
- Hydrodynamics approaches for quantum questions?
- Non-Hermitian operators! dissipation in Lindblad?
Summary

Microscopic approach:
- operator formalism
- XXZ spin chain
- Bethe Ansatz

Macroscopic approach:
- MFT, saddle-point method, dynamical phase transition

Questions:
- Finite-size crossover around a quantum phase transition? Between:
 - Luttinger Liquid ($s \to -\infty$)
 - Phase-separated ferromagnet ($s \to +\infty$)
- Across the transition: continuum spectrum \to gaped spectrum?
- XXZ transition not at $\Delta = 1$ but at $\Delta = 1 + O(L^{-2})$
- Are scaling exponents/functions known? Are they interesting?
- Hydrodynamics approaches for quantum questions?
- Non-Hermitian operators \leftrightarrow dissipation in Lindblad?
Thank you for your attention!

References:

★ Marc Cheneau, Vivien Lecomte et al.
 work in progress (2014–)

★ Vivien Lecomte, Juan P. Garrahan, Frédéric van Wijland

★ Vivien Lecomte, Alberto Imparato, Frédéric van Wijland
 PTPS 184 276 (2010)

★ Cécile Appert-Rolland, Bernard Derrida, Vivien Lecomte,
 Frédéric van Wijland